Journal of High Energy Physics

, 2016:42 | Cite as

Doubled strings, negative strings and null waves

Open Access
Regular Article - Theoretical Physics


We revisit the fundamental string (F1) solution in the doubled formalism. We show that the wave-like solution of double field theory (DFT) corresponding to the F1/pp-wave duality pair is more properly a solution of the DFT action coupled to a doubled sigma model action. The doubled string configuration which sources the pp-wave can be thought of as static gauge with the string oriented in a dual direction. We also discuss the DFT solution corresponding to a vibrating string, carrying both winding and momentum. We further show that the solution dual to the F1 in both time and space can be viewed as a “negative string” solution. Negative branes are closely connected to certain exotic string theories which involve unusual signatures for both spacetime and brane worldvolumes. In order to better understand this from the doubled point of view, we construct a variant of DFT suitable for describing theories in which the fundamental string has a Euclidean worldsheet, for which T-dualities appear to change the spacetime signature.


String Duality Bosonic Strings p-branes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M.J. Duff, Duality Rotations in String Theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].
  6. [6]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and Branes are Waves, JHEP 06 (2014) 006 [arXiv:1403.7198] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    D.S. Berman and F.J. Rudolph, Branes are Waves and Monopoles, JHEP 05 (2015) 015 [arXiv:1409.6314] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D.S. Berman and F.J. Rudolph, Strings, Branes and the Self-dual Solutions of Exceptional Field Theory, JHEP 05 (2015) 130 [arXiv:1412.2768] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    C.D.A. Blair, Conserved Currents of Double Field Theory, JHEP 04 (2016) 180 [arXiv:1507.07541] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    J.-H. Park, S.-J. Rey, W. Rim and Y. Sakatani, O(D, D) covariant Noether currents and global charges in double field theory, JHEP 11 (2015) 131 [arXiv:1507.07545] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    U. Naseer, Canonical formulation and conserved charges of double field theory, JHEP 10 (2015) 158 [arXiv:1508.00844] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    A. Dabholkar and J.A. Harvey, Nonrenormalization of the Superstring Tension, Phys. Rev. Lett. 63 (1989) 478 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and Solitons, Nucl. Phys. B 340 (1990) 33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C.D.A. Blair, E. Malek and A.J. Routh, An O(D, D) invariant Hamiltonian action for the superstring, Class. Quant. Grav. 31 (2014) 205011 [arXiv:1308.4829] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    N.B. Copland, A Double σ-model for Double Field Theory, JHEP 04 (2012) 044 [arXiv:1111.1828] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    K. Lee and J.-H. Park, Covariant action for a string in “doubled yet gauged” spacetime, Nucl. Phys. B 880 (2014) 134 [arXiv:1307.8377] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background Field Equations for the Duality Symmetric String, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    D.S. Berman and D.C. Thompson, Duality Symmetric Strings, Dilatons and O(d, d) Effective Actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    A. Dabholkar, J.P. Gauntlett, J.A. Harvey and D. Waldram, Strings as solitons and black holes as strings, Nucl. Phys. B 474 (1996) 85 [hep-th/9511053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    C.G. Callan, J.M. Maldacena and A.W. Peet, Extremal black holes as fundamental strings, Nucl. Phys. B 475 (1996) 645 [hep-th/9510134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  29. [29]
    R. Dijkgraaf, B. Heidenreich, P. Jefferson and C. Vafa, Negative Branes, Supergroups and the Signature of Spacetime, arXiv:1603.05665 [INSPIRE].
  30. [30]
    C.M. Hull, Timelike T duality, de Sitter space, large-N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    C.M. Hull, Duality and the signature of space-time, JHEP 11 (1998) 017 [hep-th/9807127] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double Field Theory of Type II Strings, JHEP 09 (2011) 013 [arXiv:1107.0008] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    E. Malek, Timelike U-dualities in Generalised Geometry, JHEP 11 (2013) 185 [arXiv:1301.0543] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    A.S. Arvanitakis and C.D.A. Blair, Black hole thermodynamics, stringy dualities and double field theory, arXiv:1608.04734 [INSPIRE].
  35. [35]
    P.C. Aichelburg and R.U. Sexl, On the Gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    T. Ortín, Gravity and strings, Cambridge University Press (2004).Google Scholar
  37. [37]
    S. Jensen, The KK-Monopole/NS5-Brane in Doubled Geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    O. Hohm and B. Zwiebach, On the Riemann Tensor in Double Field Theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect Branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].
  44. [44]
    E.A. Bergshoeff, O. Hohm, V.A. Penas and F. Riccioni, Dual Double Field Theory, JHEP 06 (2016) 026 [arXiv:1603.07380] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    D. Andriot and A. Betz, β-supergravity: a ten-dimensional theory with non-geometric fluxes and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].
  48. [48]
    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and Type IIB from a Duality Manifest Action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy Unification of Type IIA and IIB Supergravities under N = 2 D = 10 Supersymmetric Double Field Theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    M. Graña and D. Marqués, Gauged Double Field Theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  52. [52]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  53. [53]
    D.S. Berman, C.D.A. Blair, E. Malek and M.J. Perry, The O D,D geometry of string theory, Int. J. Mod. Phys. A 29 (2014) 1450080 [arXiv:1303.6727] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  54. [54]
    D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring Double Field Theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].
  56. [56]
    L. Freidel, R.G. Leigh and D. Minic, Metastring Theory and Modular Space-time, JHEP 06 (2015) 006 [arXiv:1502.08005] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    D.S. Berman and M.J. Perry, Generalized Geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  58. [58]
    M.J. Duff and J.X. Lu, Duality Rotations in Membrane Theory, Nucl. Phys. B 347 (1990) 394 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  59. [59]
    O. Hohm and H. Samtleben, Exceptional Form of D = 11 Supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: \( \mathrm{S}\mathrm{L}(2)\times {\mathbb{R}}^{+} \) exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D.C. Thompson, Duality Invariance: From M-theory to Double Field Theory, JHEP 08 (2011) 125 [arXiv:1106.4036] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I: Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  63. [63]
    M.J. Duff, J.X. Lu, R. Percacci, C.N. Pope, H. Samtleben and E. Sezgin, Membrane Duality Revisited, Nucl. Phys. B 901 (2015) 1 [arXiv:1509.02915] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  64. [64]
    Y. Sakatani and S. Uehara, Branes in extended spacetime: Brane worldvolume theory based on duality symmetry, arXiv:1607.04265 [INSPIRE].
  65. [65]
    J.H. Schwarz and A. Sen, Duality symmetries of 4-D heterotic strings, Phys. Lett. B 312 (1993) 105 [hep-th/9305185] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    S. Driezen, A. Sevrin and D.C. Thompson, Aspects of the Doubled Worldsheet, arXiv:1609.03315 [INSPIRE].
  67. [67]
    O. Hohm and H. Samtleben, Gauge theory of Kaluza-Klein and winding modes, Phys. Rev. D 88 (2013) 085005 [arXiv:1307.0039] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S.D. Mathur, The Fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Theoretische Natuurkunde, Vrije Universiteit Brussel, and the International Solvay InstitutesBrusselsBelgium

Personalised recommendations