Journal of High Energy Physics

, 2016:22 | Cite as

A consistent model for leptogenesis, dark matter and the IceCube signal

  • M. Re Fiorentin
  • V. Niro
  • N. Fornengo
Open Access
Regular Article - Theoretical Physics


We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino N 1, thus fixing its mass and lifetime, while the production of N 1 in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional SU(2) R interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the BL asymmetry dominantly produced by the next-to-lightest neutrino N 2. Further consequences and predictions of the model are that: the N 1 production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the SU(2) R triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at 7 × 109 GeV. Additionally, the model requires a vanishing absolute neutrino mass scale m 1 ≃ 0.


Beyond Standard Model Cosmology of Theories beyond the SM Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    IceCube collaboration, M.G. Aartsen et al., First observation of PeV-energy neutrinos with IceCube, Phys. Rev. Lett. 111 (2013) 021103 [arXiv:1304.5356] [INSPIRE].
  2. [2]
    IceCube collaboration, M.G. Aartsen et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett. 113 (2014) 101101 [arXiv:1405.5303] [INSPIRE].
  3. [3]
    IceCube collaboration, M.G. Aartsen et al., Evidence for high-energy extraterrestrial neutrinos at the IceCube detector, Science 342 (2013) 1242856 [arXiv:1311.5238] [INSPIRE].
  4. [4]
    IceCube collaboration, M.G. Aartsen et al., Evidence for astrophysical muon neutrinos from the northern sky with IceCube, Phys. Rev. Lett. 115 (2015) 081102 [arXiv:1507.04005] [INSPIRE].
  5. [5]
    M.V. Garzelli, S. Moch and G. Sigl, Lepton fluxes from atmospheric charm revisited, JHEP 10 (2015) 115 [arXiv:1507.01570] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Halzen and L. Wille, Upper limit on forward charm contribution to atmospheric neutrino flux, arXiv:1601.03044 [INSPIRE].
  7. [7]
    F. Halzen and L. Wille, Charm contribution to the atmospheric neutrino flux, Phys. Rev. D 94 (2016) 014014 [arXiv:1605.01409] [INSPIRE].ADSGoogle Scholar
  8. [8]
    K. Murase, On the origin of high-energy cosmic neutrinos, AIP Conf. Proc. 1666 (2015) 040006 [arXiv:1410.3680] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    L.A. Anchordoqui et al., Cosmic neutrino pevatrons: a brand new pathway to astronomy, astrophysics and particle physics, JHEAp 1-2 (2014) 1 [arXiv:1312.6587] [INSPIRE].ADSGoogle Scholar
  10. [10]
    I. Cholis and D. Hooper, On the origin of IceCube’s PeV neutrinos, JCAP 06 (2013) 030 [arXiv:1211.1974] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Y. Ema, R. Jinno and T. Moroi, Cosmic-ray neutrinos from the decay of long-lived particle and the recent IceCube result, Phys. Lett. B 733 (2014) 120 [arXiv:1312.3501] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Y. Ema, R. Jinno and T. Moroi, Cosmological implications of high-energy neutrino emission from the decay of long-lived particle, JHEP 10 (2014) 150 [arXiv:1408.1745] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    B. Feldstein, A. Kusenko, S. Matsumoto and T.T. Yanagida, Neutrinos at IceCube from heavy decaying dark matter, Phys. Rev. D 88 (2013) 015004 [arXiv:1303.7320] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Bhattacharya, M.H. Reno and I. Sarcevic, Reconciling neutrino flux from heavy dark matter decay and recent events at IceCube, JHEP 06 (2014) 110 [arXiv:1403.1862] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Bhattacharya, R. Gandhi and A. Gupta, The direct detection of boosted dark matter at high energies and PeV events at IceCube, JCAP 03 (2015) 027 [arXiv:1407.3280] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Esmaili and P.D. Serpico, Are IceCube neutrinos unveiling PeV-scale decaying dark matter?, JCAP 11 (2013) 054 [arXiv:1308.1105] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Esmaili, S.K. Kang and P.D. Serpico, IceCube events and decaying dark matter: hints and constraints, JCAP 12 (2014) 054 [arXiv:1410.5979] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Bai, R. Lu and J. Salvado, Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin, JHEP 01 (2016) 161 [arXiv:1311.5864] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Murase, R. Laha, S. Ando and M. Ahlers, Testing the dark matter scenario for PeV neutrinos observed in IceCube, Phys. Rev. Lett. 115 (2015) 071301 [arXiv:1503.04663] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C.S. Fong, H. Minakata, B. Panes and R. Zukanovich Funchal, Possible interpretations of IceCube high-energy neutrino events, JHEP 02 (2015) 189 [arXiv:1411.5318] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Kopp, J. Liu and X.-P. Wang, Boosted dark matter in IceCube and at the galactic center, JHEP 04 (2015) 105 [arXiv:1503.02669] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Esmaili and P.D. Serpico, Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints, JCAP 10 (2015) 014 [arXiv:1505.06486] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Anisimov and P. Di Bari, Cold dark matter from heavy right-handed neutrino mixing, Phys. Rev. D 80 (2009) 073017 [arXiv:0812.5085] [INSPIRE].ADSGoogle Scholar
  24. [24]
    T. Higaki, R. Kitano and R. Sato, Neutrinoful universe, JHEP 07 (2014) 044 [arXiv:1405.0013] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Rott, K. Kohri and S.C. Park, Superheavy dark matter and IceCube neutrino signals: Bounds on decaying dark matter, Phys. Rev. D 92 (2015) 023529 [arXiv:1408.4575] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.M. Boucenna et al., Decaying leptophilic dark matter at IceCube, JCAP 12 (2015) 055 [arXiv:1507.01000] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    M. Chianese, G. Miele, S. Morisi and E. Vitagliano, Low energy IceCube data and a possible Dark Matter related excess, Phys. Lett. B 757 (2016) 251 [arXiv:1601.02934] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    V. Barger and W.-Y. Keung, Superheavy particle origin of IceCube PeV neutrino events, Phys. Lett. B 727 (2013) 190 [arXiv:1305.6907] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Ko and Y. Tang, IceCube events from heavy DM decays through the right-handed neutrino portal, Phys. Lett. B 751 (2015) 81 [arXiv:1508.02500] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    E. Dudas, Y. Mambrini and K.A. Olive, Monochromatic neutrinos generated by dark matter and the seesaw mechanism, Phys. Rev. D 91 (2015) 075001 [arXiv:1412.3459] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P. Di Bari, P.O. Ludl and S. Palomares-Ruiz, Unifying leptogenesis, dark matter and high-energy neutrinos with right-handed neutrino mixing via Higgs portal, arXiv:1606.06238 [INSPIRE].
  32. [32]
    P.S.B. Dev, D. Kazanas, R.N. Mohapatra, V.L. Teplitz and Y. Zhang, Heavy right-handed neutrino dark matter and PeV neutrinos at IceCube, JCAP 08 (2016) 034 [arXiv:1606.04517] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95.Google Scholar
  35. [35]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  36. [36]
    S. L. Glashow, The future of elementary particle physics, NATO Sci. Ser. B 61 (1980) 687.Google Scholar
  37. [37]
    R. Barbieri, D.V. Nanopoulos, G. Morchio and F. Strocchi, Neutrino masses in grand unified theories, Phys. Lett. B 90 (1980) 91 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) ⊗ U(1) theories, Phys. Rev. D 22 (1980) 2227.ADSGoogle Scholar
  40. [40]
    J. Schechter and J.W.F. Valle, Neutrino decay and spontaneous violation of lepton number, Phys. Rev. D 25 (1982) 774.ADSGoogle Scholar
  41. [41]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  43. [43]
    R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].ADSGoogle Scholar
  44. [44]
    R.N. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  45. [45]
    G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  46. [46]
    W. Grimus, Introduction to left-right symmetric models, in the proceending of the 4th Hellenic School on Elementary particle physics, September 2–20, Corfu, Greece (1992).Google Scholar
  47. [47]
    N.G. Deshpande, J.F. Gunion, B. Kayser and F.I. Olness, Left-right symmetric electroweak models with triplet Higgs, Phys. Rev. D 44 (1991) 837 [INSPIRE].ADSGoogle Scholar
  48. [48]
    G. Senjanović, Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B 153 (1979) 334.ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    A. Donini, F. Feruglio, J. Matias and F. Zwirner, Phenomenological aspects of a fermiophobic SU(2) × SU(2 × U(1) extension of the standard model, Nucl. Phys. B 507 (1997) 51 [hep-ph/9705450] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K. Hsieh, K. Schmitz, J.-H. Yu and C.P. Yuan, Global analysis of general SU(2) × SU(2) × U(1) models with precision data, Phys. Rev. D 82 (2010) 035011 [arXiv:1003.3482] [INSPIRE].ADSGoogle Scholar
  51. [51]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  52. [52]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  53. [53]
    R. Adhikari et al., A white paper on keV sterile neutrino dark matter, Submitted to: White paper (2016) [arXiv:1602.04816] [INSPIRE].
  54. [54]
    M. Nemevšek, G. Senjanović and Y. Zhang, Warm dark matter in low scale left-right theory, JCAP 07 (2012) 006 [arXiv:1205.0844] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Bezrukov, H. Hettmansperger and M. Lindner, keV sterile neutrino dark matter in gauge extensions of the standard model, Phys. Rev. D 81 (2010) 085032 [arXiv:0912.4415] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J. Heeck and S. Patra, Minimal left-right symmetric dark matter, Phys. Rev. Lett. 115 (2015) 121804 [arXiv:1507.01584] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Merle, V. Niro and D. Schmidt, New production mechanism for keV sterile neutrino dark matter by decays of frozen-in scalars, JCAP 03 (2014) 028 [arXiv:1306.3996] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    A. Merle and M. Totzauer, keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features, JCAP 06 (2015) 011 [arXiv:1502.01011] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    P. Di Bari, Seesaw geometry and leptogenesis, Nucl. Phys. B 727 (2005) 318 [hep-ph/0502082] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    IceCube collaboration, M.G. Aartsen et al., The IceCube neutrino observatory — Contributions to ICRC 2015 part II: atmospheric and astrophysical diffuse neutrino searches of all flavors, arXiv:1510.05223 [INSPIRE].
  61. [61]
    S. Davidson, E. Nardi and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105 [arXiv:0802.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Hambye and G. Senjanović, Consequences of triplet seesaw for leptogenesis, Phys. Lett. B 582 (2004) 73 [hep-ph/0307237] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E. Bertuzzo, P. Di Bari and L. Marzola, The problem of the initial conditions in flavoured leptogenesis and the tauon N 2 -dominated scenario, Nucl. Phys. B 849 (2011) 521 [arXiv:1007.1641] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  64. [64]
    P. Di Bari, S. King and M. Re Fiorentin, Strong thermal leptogenesis and the absolute neutrino mass scale, JCAP 03 (2014) 050 [arXiv:1401.6185] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  65. [65]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and muone, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  66. [66]
    W. Buchmüller and M. Plümacher, Baryon asymmetry and neutrino mixing, Phys. Lett. B 389 (1996) 73 [hep-ph/9608308] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    F. Buccella, D. Falcone and F. Tramontano, Baryogenesis via leptogenesis in SO(10) models, Phys. Lett. B 524 (2002) 241 [hep-ph/0108172] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    E. Nezri and J. Orloff, Neutrino oscillations versus leptogenesis in SO(10) models, JHEP 04 (2003) 020 [hep-ph/0004227] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    G.C. Branco, R. Gonzalez Felipe, F.R. Joaquim and M.N. Rebelo, Leptogenesis, CP-violation and neutrino data: What can we learn?, Nucl. Phys. B 640 (2002) 202 [hep-ph/0202030] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    E.K. Akhmedov, M. Frigerio and A.Yu. Smirnov, Probing the seesaw mechanism with neutrino data and leptogenesis, JHEP 09 (2003) 021 [hep-ph/0305322] [INSPIRE].
  71. [71]
    P. Di Bari and A. Riotto, Successful type-I Leptogenesis with SO(10)-inspired mass relations, Phys. Lett. B 671 (2009) 462 [arXiv:0809.2285] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    P. Di Bari and A. Riotto, Testing SO(10)-inspired leptogenesis with low energy neutrino experiments, JCAP 04 (2011) 037 [arXiv:1012.2343] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    P. Di Bari, L. Marzola and M. Re Fiorentin, Decrypting SO(10)-inspired leptogenesis, Nucl. Phys. B 893 (2015) 122 [arXiv:1411.5478] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  74. [74]
    P.S. Bhupal Dev, C.-H. Lee and R.N. Mohapatra, Leptogenesis constraints on the mass of right-handed gauge bosons, Phys. Rev. D 90 (2014) 095012 [arXiv:1408.2820] [INSPIRE].ADSGoogle Scholar
  75. [75]
    J. Gluza and T. Jelinski, Heavy neutrinos and the pplljj CMS data, Phys. Lett. B 748 (2015) 125 [arXiv:1504.05568] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Garny, A. Ibarra and D. Tran, Constraints on hadronically decaying dark matter, JCAP 08 (2012) 025 [arXiv:1205.6783] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    K. Murase and J.F. Beacom, Constraining very heavy dark matter using diffuse backgrounds of neutrinos and cascaded gamma rays, JCAP 10 (2012) 043 [arXiv:1206.2595] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    K. Das, T. Li, S. Nandi and S.K. Rai, Diboson excesses in an anomaly free leptophobic left-right model, Phys. Rev. D 93 (2016) 016006 [arXiv:1512.00190] [INSPIRE].ADSGoogle Scholar
  79. [79]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  80. [80]
    E.W. Kolb and M.S. Turner, The early universe, Frontiers of Physics, Westview Press (1990).Google Scholar
  81. [81]
    C. Arina and N. Sahu, Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis, Nucl. Phys. B 854 (2012) 666 [arXiv:1108.3967] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  82. [82]
    S. Davidson and A. Ibarra, A lower bound on the right-handed neutrino mass from leptogenesis, Phys. Lett. B 535 (2002) 25 [hep-ph/0202239] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    S. Blanchet and P. Di Bari, New aspects of leptogenesis bounds, Nucl. Phys. B 807 (2009) 155 [arXiv:0807.0743] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  84. [84]
    A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    S. Blanchet, P. Di Bari, D.A. Jones and L. Marzola, Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations, JCAP 01 (2013) 041 [arXiv:1112.4528] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    S. Blanchet and P. Di Bari, Flavor effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    S. Antusch, P. Di Bari, D.A. Jones and S.F. King, A fuller flavour treatment of N 2 -dominated leptogenesis, Nucl. Phys. B 856 (2012) 180 [arXiv:1003.5132] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  88. [88]
    S. Blanchet, P. Di Bari and G.G. Raffelt, Quantum Zeno effect and the impact of flavor in leptogenesis, JCAP 03 (2007) 012 [hep-ph/0611337] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    C.S. Fong, E. Nardi and A. Riotto, Leptogenesis in the universe, Adv. High Energy Phys. 2012 (2012) 158303 [arXiv:1301.3062] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  90. [90]
    A. Abada, S. Davidson, A. Ibarra, F.X. Josse-Michaux, M. Losada and A. Riotto, Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    W. Buchmüller and M. Plümacher, Spectator processes and baryogenesis, Phys. Lett. B 511 (2001) 74 [hep-ph/0104189] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    C.S. Fong, M.C. Gonzalez-Garcia and J. Racker, CP violation from scatterings with gauge bosons in leptogenesis, Phys. Lett. B 697 (2011) 463 [arXiv:1010.2209] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    G.F. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    W. Buchmüller and S. Fredenhagen, Quantum mechanics of baryogenesis, Phys. Lett. B 483 (2000) 217 [hep-ph/0004145] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    A. De Simone and A. Riotto, Quantum Boltzmann equations and leptogenesis, JCAP 08 (2007) 002 [hep-ph/0703175] [INSPIRE].CrossRefGoogle Scholar
  98. [98]
    O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [INSPIRE].ADSGoogle Scholar
  99. [99]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Global analyses of neutrino oscillation experiments, Nucl. Phys. B 908 (2016) 199 [arXiv:1512.06856] [INSPIRE].ADSCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain
  3. 3.Instituto de Física Teórica UAM/CSICMadridSpain
  4. 4.Dipartimento di FisicaUniversità di TorinoTorinoItaly
  5. 5.Istituto Nazionale di Fisica Nucleare, Sezione di TorinoTorinoItaly

Personalised recommendations