Advertisement

Journal of High Energy Physics

, 2015:194 | Cite as

On the impact of lepton PDFs

  • Valerio Bertone
  • Stefano Carrazza
  • Davide Pagani
  • Marco Zaro
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we discuss the effect of the complete leading-order QED corrections to the DGLAP equations that govern the perturbative evolution of parton distribution functions (PDFs). This requires the extension of the purely QCD DGLAP evolution including a PDF for the photons and, consistently, also for the charged leptons e ±, μ ± and τ ±. We present the implementation of the QED-corrected DGLAP evolution in the presence of photon and lepton PDFs in the APFEL program and, by means of different assumptions for the initial scale PDFs, we produce for the first time PDF sets containing charged lepton distributions. We also present phenomenological studies that aim to assess the impact of the presence of lepton PDFs in the proton for some relevant SM (and BSM) processes at the LHC at 13 TeV and the FCC-hh at 100 TeV. The impact of the photon PDF is also outlined for those processes.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  2. [2]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  4. [4]
    ZEUS, H1 collaboration, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic e ± p scattering cross sections and QCD analysis of HERA data, arXiv:1506.06042 [INSPIRE].
  5. [5]
    S. Alekhin, J. Blumlein and S. Moch, The ABM parton distributions tuned to LHC data, Phys. Rev. D 89 (2014) 054028 [arXiv:1310.3059] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  8. [8]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [arXiv:1407.0823] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184 [arXiv:1504.03446] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    A. Denner, L. Hofer, A. Scharf and S. Uccirati, Electroweak corrections to lepton pair production in association with two hard jets at the LHC, JHEP 01 (2015) 094 [arXiv:1411.0916] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    M. Chiesa, N. Greiner and F. Tramontano, Electroweak corrections for LHC processes, arXiv:1507.08579 [INSPIRE].
  13. [13]
    V. Bertone, S. Carrazza and J. Rojo, APFEL: A PDF Evolution Library with QED corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    M. Roth and S. Weinzierl, QED corrections to the evolution of parton distributions, Phys. Lett. B 590 (2004) 190 [hep-ph/0403200] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  17. [17]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    M.A.G. Aivazis, J.C. Collins, F.I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R.S. Thorne and R.G. Roberts, An ordered analysis of heavy flavor production in deep inelastic scattering, Phys. Rev. D 57 (1998) 6871 [hep-ph/9709442] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    S. Carrazza, S. Forte and J. Rojo, Parton distributions and event generators, arXiv:1311.5887 [INSPIRE].
  22. [22]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    R. Boughezal, Y. Li and F. Petriello, Disentangling radiative corrections using the high-mass Drell-Yan process at the LHC, Phys. Rev. D 89 (2014) 034030 [arXiv:1312.3972] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  25. [25]
    W. Hollik, J.M. Lindert, E. Mirabella and D. Pagani, Electroweak corrections to squark-antisquark production at the LHC, JHEP 08 (2015) 099 [arXiv:1506.01052] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    CMS collaboration, Reconstruction and identification of τ lepton decays to hadrons and ν τ at CMS, arXiv:1510.07488 [INSPIRE].
  27. [27]
    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1506.00962 [INSPIRE].
  28. [28]
    A. Kulesza and W.J. Stirling, Like sign W boson production at the LHC as a probe of double parton scattering, Phys. Lett. B 475 (2000) 168 [hep-ph/9912232] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    CMS collaboration, Missing transverse energy performance of the CMS detector, 2011 JINST 6 P09001 [arXiv:1106.5048] [INSPIRE].
  30. [30]
    CMS collaboration, Performance of the CMS missing transverse momentum reconstruction in pp data at \( \sqrt{s}=8 \) TeV, 2015 JINST 10 P02006 [arXiv:1411.0511] [INSPIRE].
  31. [31]
    ATLAS collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS, Eur. Phys. J. C 72 (2012) 1844 [arXiv:1108.5602] [INSPIRE].
  32. [32]
    ATLAS collaboration, Expected performance of missing transverse momentum reconstruction for the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATL-PHYS-PUB-2015-023 (2015).
  33. [33]
    ATLAS collaboration, Performance of missing transverse momentum reconstruction for the ATLAS detector in the first proton-proton collisions at at \( \sqrt{s}=13 \) TeV, ATL-PHYS-PUB-2015-027 (2015).
  34. [34]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].CrossRefADSMATHGoogle Scholar
  35. [35]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    G. Curci, W. Furmanski and R. Petronzio, Evolution of parton densities beyond leading order: the nonsinglet case, Nucl. Phys. B 175 (1980) 27 [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    W. Furmanski and R. Petronzio, Singlet parton densities beyond leading order, Phys. Lett. B 97 (1980) 437 [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three loop splitting functions in QCD: the nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Valerio Bertone
    • 1
  • Stefano Carrazza
    • 2
  • Davide Pagani
    • 3
  • Marco Zaro
    • 4
    • 5
  1. 1.PH Department, TH Unit, CERNGeneva 23Switzerland
  2. 2.Dipartimento di Fisica, Università di Milano and INFN — Sezione di MilanoMilanoItaly
  3. 3.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHEParisFrance
  5. 5.CNRS, UMR 7589, LPTHEParisFrance

Personalised recommendations