Advertisement

Journal of High Energy Physics

, 2015:131 | Cite as

O(D, D) covariant Noether currents and global charges in double field theory

  • Jeong-Hyuck Park
  • Soo-Jong Rey
  • Woohyun Rim
  • Yuho Sakatani
Open Access
Regular Article - Theoretical Physics

Abstract

Double field theory is an approach for massless modes of string theory, unifying and geometrizing all gauge invariance in manifest O(D, D) covariant manner. In this approach, we derive off-shell conserved Noether current and corresponding Noether potential associated with unified gauge invariance. We add Wald-type counter two-form to the Noether potential and define conserved global charges as surface integral. We check our O(D, D) covariant formula against various string backgrounds, both geometric and non-geometric. In all cases we examined, we find perfect agreements with previous results. Our formula facilitates to evaluate momenta along not only ordinary spacetime directions but also dual spacetime directions on equal footing. From this, we confirm recent assertion that null wave in doubled spacetime is the same as macroscopic fundamental string in ordinary spacetime.

Keywords

String Duality Classical Theories of Gravity Space-Time Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    C. Hull and B. Zwiebach, The Gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    I. Jeon, K. Lee and J.-H. Park, Double field formulation of Yang-Mills theory, Phys. Lett. B 701 (2011) 260 [arXiv:1102.0419] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    K.-S. Choi and J.-H. Park, Standard Model as a Double Field Theory, Phys. Rev. Lett. 115 (2015) 171603 [arXiv:1506.05277] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    O. Hohm and S.K. Kwak, Double Field Theory Formulation of Heterotic Strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    O.A. Bedoya, D. Marques and C. Núñez, Heterotic α -corrections in Double Field Theory, JHEP 12 (2014) 074 [arXiv:1407.0365] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    K. Lee, Quadratic α -corrections to heterotic double field theory, Nucl. Phys. B 899 (2015) 594 [arXiv:1504.00149] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].
  12. [12]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  13. [13]
    V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
  14. [14]
    R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  15. [15]
    T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Annals Phys. 88 (1974) 286 [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  16. [16]
    M. Henneaux and C. Teitelboim, Hamiltonian treatment of asymptotically anti-de Sitter spaces, Phys. Lett. B 142 (1984) 355 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    J.D. Brown and M. Henneaux, On the Poisson Brackets of Differentiable Generators in Classical Field Theory, J. Math. Phys. 27 (1986) 489 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  19. [19]
    P.S. Jang, Note on cosmic censorship, Phys. Rev. D 20 (1979) 834 [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Cvetič, S. Griffies and S.-J. Rey, Static domain walls in N = 1 supergravity, Nucl. Phys. B 381 (1992) 301 [hep-th/9201007] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    M. Cvetič, S. Griffies and S.-J. Rey, Nonperturbative stability of supergravity and superstring vacua, Nucl. Phys. B 389 (1993) 3 [hep-th/9206004] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    D. Bak, D. Cangemi and R. Jackiw, Energy momentum conservation in general relativity, Phys. Rev. D 49 (1994) 5173 [Erratum ibid. D 52 (1995) 3753] [hep-th/9310025] [INSPIRE].
  23. [23]
    S.-J. Rey, Classical and quantum aspects of BPS black holes in N = 2, D = 4 heterotic string compactifications, Nucl. Phys. B 508 (1997) 569 [hep-th/9610157] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    G. Barnich, Boundary charges in gauge theories: Using Stokes theorem in the bulk, Class. Quant. Grav. 20 (2003) 3685 [hep-th/0301039] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  26. [26]
    G. Barnich and G. Compere, Surface charge algebra in gauge theories and thermodynamic integrability, J. Math. Phys. 49 (2008) 042901 [arXiv:0708.2378] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  27. [27]
    R.B. Mann and D. Marolf, Holographic renormalization of asymptotically flat spacetimes, Class. Quant. Grav. 23 (2006) 2927 [hep-th/0511096] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  28. [28]
    R.B. Mann, D. Marolf and A. Virmani, Covariant Counterterms and Conserved Charges in Asymptotically Flat Spacetimes, Class. Quant. Grav. 23 (2006) 6357 [gr-qc/0607041] [INSPIRE].
  29. [29]
    R.B. Mann, D. Marolf, R. McNees and A. Virmani, On the Stress Tensor for Asymptotically Flat Gravity, Class. Quant. Grav. 25 (2008) 225019 [arXiv:0804.2079] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    S. Fischetti, W. Kelly and D. Marolf, Conserved Charges in Asymptotically (Locally) AdS Spacetimes, arXiv:1211.6347 [INSPIRE].
  31. [31]
    D.S. Berman, E.T. Musaev and M.J. Perry, Boundary Terms in Generalized Geometry and doubled field theory, Phys. Lett. B 706 (2011) 228 [arXiv:1110.3097] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    J.D. Brown and J.W. York Jr., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993) 1407 [gr-qc/9209012] [INSPIRE].
  33. [33]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: Application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    K. Lee and J.-H. Park, Covariant action for a string indoubled yet gaugedspacetime, Nucl. Phys. B 880 (2014) 134 [arXiv:1307.8377] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    W. Kim, S. Kulkarni and S.-H. Yi, Quasilocal Conserved Charges in a Covariant Theory of Gravity, Phys. Rev. Lett. 111 (2013) 081101 [Erratum ibid. 112 (2014) 079902] [arXiv:1306.2138] [INSPIRE].
  38. [38]
    S. Hyun, S.-A. Park and S.-H. Yi, Quasi-local charges and asymptotic symmetry generators, JHEP 06 (2014) 151 [arXiv:1403.2196] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and Solitons, Nucl. Phys. B 340 (1990) 33 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    G.T. Horowitz and A. Strominger, Black strings and P-branes, Nucl. Phys. B 360 (1991) 197 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    J.M. Maldacena and A. Strominger, Semiclassical decay of near extremal five-branes, JHEP 12 (1997) 008 [hep-th/9710014] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and Branes are Waves, JHEP 06 (2014) 006 [arXiv:1403.7198] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  43. [43]
    C.D.A. Blair, Conserved currents of Double Field Theory, arXiv:1507.07541 [INSPIRE]
  44. [44]
    I. Jeon, K. Lee and J.-H. Park, Incorporation of fermions into double field theory, JHEP 11 (2011) 025 [arXiv:1109.2035] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    I. Jeon, K. Lee and J.-H. Park, Ramond-Ramond Cohomology and O(D, D) T -duality, JHEP 09 (2012) 079 [arXiv:1206.3478] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  46. [46]
    I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy Unification of Type IIA and IIB Supergravities under N = 2 D = 10 Supersymmetric Double Field Theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric Double Field Theory: Stringy Reformulation of Supergravity, Phys. Rev. D 85 (2012) 081501(R) [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].
  48. [48]
    W. Cho, J.J. Fernández-Melgarejo, I. Jeon and J.-H. Park, Supersymmetric gauged double field theory: systematic derivation by virtue of twist, JHEP 08 (2015) 084 [arXiv:1505.01301] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    M. Gualtieri, Generalized complex geometry, math.DG/0401221 [INSPIRE].
  50. [50]
    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    M. Garcia-Fernandez, Torsion-free generalized connections and Heterotic Supergravity, Commun. Math. Phys. 332 (2014) 89 [arXiv:1304.4294] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  52. [52]
    O. Hohm and B. Zwiebach, On the Riemann Tensor in Double Field Theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  53. [53]
    P.A.M. Dirac, General Theory of Relativity, Wiley, New York U.S.A. (1975).Google Scholar
  54. [54]
    R.L. Arnowitt, S. Deser and C.W. Misner, Dynamical Structure and Definition of Energy in General Relativity, Phys. Rev. 116 (1959) 1322 [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  55. [55]
    M. Cederwall, The geometry behind double geometry, JHEP 09 (2014) 070 [arXiv:1402.2513] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  56. [56]
    M. Cederwall, T-duality and non-geometric solutions from double geometry, Fortsch. Phys. 62 (2014) 942 [arXiv:1409.4463] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  57. [57]
    Y. Sakatani, Exotic branes and non-geometric fluxes, JHEP 03 (2015) 135 [arXiv:1412.8769] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  58. [58]
    J.X. Lu, ADM masses for black strings and p-branes, Phys. Lett. B 313 (1993) 29 [hep-th/9304159] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    D.S. Berman and F.J. Rudolph, Branes are Waves and Monopoles, JHEP 05 (2015) 015 [arXiv:1409.6314] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  60. [60]
    D.S. Berman and F.J. Rudolph, Strings, Branes and the Self-dual Solutions of Exceptional Field Theory, JHEP 05 (2015) 130 [arXiv:1412.2768] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  61. [61]
    G. Clement, D. Gal’tsov and C. Leygnac, Black branes on the linear dilaton background, Phys. Rev. D 71 (2005) 084014 [hep-th/0412321] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    S.W. Hawking and G.T. Horowitz, The Gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].
  63. [63]
    R.B. Mann and R. McNees, Boundary Terms Unbound! Holographic Renormalization of Asymptotically Linear Dilaton Gravity, Class. Quant. Grav. 27 (2010) 065015 [arXiv:0905.3848] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  64. [64]
    E. Lozano-Tellechea and T. Ortín, 7-branes and higher Kaluza-Klein branes, Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].
  65. [65]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  66. [66]
    J. de Boer and M. Shigemori, Exotic Branes in String Theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Jeong-Hyuck Park
    • 1
  • Soo-Jong Rey
    • 2
    • 3
  • Woohyun Rim
    • 2
  • Yuho Sakatani
    • 2
  1. 1.Department of PhysicsSogang UniversitySeoulKorea
  2. 2.School of Physics and AstronomySeoul National UniversitySeoulKorea
  3. 3.Fields, Gravity & Strings, Center for Theoretical Physics of the UniverseInstitute for Basic SciencesDaejeonKorea

Personalised recommendations