Advertisement

Journal of High Energy Physics

, 2015:121 | Cite as

Debye screening mass of hot Yang-Mills theory to three-loop order

  • Ioan Ghisoiu
  • Jan Möller
  • York Schröder
Open Access
Regular Article - Theoretical Physics

Abstract

Building upon our earlier work, we compute a Debye mass of finite-temperature Yang-Mills theory to three-loop order. As an application, we determine a g 7 contribution to the thermodynamic pressure of hot QCD.

Keywords

Thermal Field Theory Quark-Gluon Plasma Effective field theories Phase Diagram of QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N.P. Landsman and C.G. van Weert, Real and imaginary time field theory at finite temperature and density, Phys. Rept. 145 (1987) 141 [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    K. Kajantie and J.I. Kapusta, Infrared limit of the axial gauge gluon propagator at high temperature, Phys. Lett. B 110 (1982) 299 [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    K. Kajantie and J.I. Kapusta, Behavior of gluons at high temperature, Annals Phys. 160 (1985) 477 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    T. Furusawa and K. Kikkawa, Gauge invariant values of gluon masses at high temperature, Phys. Lett. B 128 (1983) 218 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    T. Toimela, On the magnetic and electric masses of the gluons in the general covariant gauge, Z. Phys. C 27 (1985) 289 [Erratum ibid. C 28 (1985) 162] [INSPIRE].
  7. [7]
    P.B. Arnold and L.G. Yaffe, The non-abelian Debye screening length beyond leading order, Phys. Rev. D 52 (1995) 7208 [hep-ph/9508280] [INSPIRE].
  8. [8]
    D. Bieletzki, K. Lessmeier, O. Philipsen and Y. Schröder, Resummation scheme for 3D Yang-Mills and the two-loop magnetic mass for hot gauge theories, JHEP 05 (2012) 058 [arXiv:1203.6538] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    R. Kobes, G. Kunstatter and A. Rebhan, QCD plasma parameters and the gauge dependent gluon propagator, Phys. Rev. Lett. 64 (1990) 2992 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    R. Kobes, G. Kunstatter and A. Rebhan, Gauge dependence identities and their application at finite temperature, Nucl. Phys. B 355 (1991) 1 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A.K. Rebhan, The non-Abelian Debye mass at next-to-leading order, Phys. Rev. D 48 (1993) 3967 [hep-ph/9308232] [INSPIRE].
  12. [12]
    E. Braaten and A. Nieto, Next-to-leading order Debye mass for the quark-gluon plasma, Phys. Rev. Lett. 73 (1994) 2402 [hep-ph/9408273] [INSPIRE].
  13. [13]
    K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, The pressure of hot QCD up to g 6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321] [INSPIRE].
  14. [14]
    A. Hart, M. Laine and O. Philipsen, Static correlation lengths in QCD at high temperatures and finite densities, Nucl. Phys. B 586 (2000) 443 [hep-ph/0004060] [INSPIRE].
  15. [15]
    M. Laine and M. Vepsäläinen, On the smallest screening masses in hot QCD, JHEP 09 (2009) 023 [arXiv:0906.4450] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    J. Moller and Y. Schröder, Three-loop matching coefficients for hot QCD: reduction and gauge independence, JHEP 08 (2012) 025 [arXiv:1207.1309] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    P.H. Ginsparg, First order and second order phase transitions in gauge theories at finite temperature, Nucl. Phys. B 170 (1980) 388 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    T. Appelquist and R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics, Phys. Rev. D 23 (1981) 2305 [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model, Nucl. Phys. B 458 (1996) 90 [hep-ph/9508379] [INSPIRE].
  20. [20]
    A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, Plaquette expectation value and gluon condensate in three dimensions, JHEP 01 (2005) 013 [hep-lat/0412008] [INSPIRE].
  21. [21]
    A. Hietanen and A. Kurkela, Plaquette expectation value and lattice free energy of three-dimensional SU(N ) gauge theory, JHEP 11 (2006) 060 [hep-lat/0609015] [INSPIRE].
  22. [22]
    S. Chapman, A new dimensionally reduced effective action for QCD at high temperature, Phys. Rev. D 50 (1994) 5308 [hep-ph/9407313] [INSPIRE].
  23. [23]
    J. Moller and Y. Schröder, Dimensionally reduced QCD at high temperature, Prog. Part. Nucl. Phys. 67 (2012) 168 [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    L.F. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    L.F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].MathSciNetGoogle Scholar
  26. [26]
    E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996) 3421 [hep-ph/9510408] [INSPIRE].
  27. [27]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  28. [28]
    P. Nogueira, Abusing qgraf, Nucl. Instrum. Meth. A 559 (2006) 220 [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  30. [30]
    J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].MATHCrossRefADSGoogle Scholar
  31. [31]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  32. [32]
    M. Nishimura and Y. Schröder, IBP methods at finite temperature, JHEP 09 (2012) 051 [arXiv:1207.4042] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
  34. [34]
    A. Gynther, M. Laine, Y. Schröder, C. Torrero and A. Vuorinen, Four-loop pressure of massless O(N ) scalar field theory, JHEP 04 (2007) 094 [hep-ph/0703307] [INSPIRE].
  35. [35]
    J. Moller and Y. Schröder, Open problems in hot QCD, Nucl. Phys. Proc. Suppl. 205-206 (2010) 218 [arXiv:1007.1223] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    P.B. Arnold and C.-X. Zhai, The three loop free energy for pure gauge QCD, Phys. Rev. D 50 (1994) 7603 [hep-ph/9408276] [INSPIRE].
  37. [37]
    P.B. Arnold and C.-x. Zhai, The three loop free energy for high temperature QED and QCD with fermions, Phys. Rev. D 51 (1995) 1906 [hep-ph/9410360] [INSPIRE].
  38. [38]
    K.G. Chetyrkin, M. Faisst, C. Sturm and M. Tentyukov, ϵ-finite basis of master integrals for the integration-by-parts method, Nucl. Phys. B 742 (2006) 208 [hep-ph/0601165] [INSPIRE].
  39. [39]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].MathSciNetADSGoogle Scholar
  40. [40]
    I. Ghisoiu and Y. Schröder, A new three-loop sum-integral of mass dimension two, JHEP 09 (2012) 016 [arXiv:1207.6214] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    I. Ghisoiu and Y. Schröder, A new method for Taming tensor sum-integrals, JHEP 11 (2012) 010 [arXiv:1208.0284] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    A. Rajantie, SU(5) + adjoint Higgs model at finite temperature, Nucl. Phys. B 501 (1997) 521 [hep-ph/9702255] [INSPIRE].
  43. [43]
    M. Laine and A. Rajantie, Lattice continuum relations for 3D SU(N ) + Higgs theories, Nucl. Phys. B 513 (1998) 471 [hep-lat/9705003] [INSPIRE].
  44. [44]
    K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3D physics and the electroweak phase transition: Perturbation theory, Nucl. Phys. B 425 (1994) 67 [hep-ph/9404201] [INSPIRE].
  45. [45]
    N.P. Landsman, Limitations to dimensional reduction at high temperature, Nucl. Phys. B 322 (1989) 498 [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    M. Laine and Y. Schröder, Two-loop QCD gauge coupling at high temperatures, JHEP 03 (2005) 067 [hep-ph/0503061] [INSPIRE].
  47. [47]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  48. [48]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Strong coupling constant with flavor thresholds at four loops in the MS scheme, Phys. Rev. Lett. 79 (1997) 2184 [hep-ph/9706430] [INSPIRE].
  49. [49]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  50. [50]
    K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, How to resum long distance contributions to the QCD pressure?, Phys. Rev. Lett. 86 (2001) 10 [hep-ph/0007109] [INSPIRE].
  51. [51]
    F. Di Renzo, M. Laine, V. Miccio, Y. Schröder and C. Torrero, The Leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure, JHEP 07 (2006) 026 [hep-ph/0605042] [INSPIRE].
  52. [52]
    K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, Four loop vacuum energy density of the SU(N c) + adjoint Higgs theory, JHEP 04 (2003) 036 [hep-ph/0304048] [INSPIRE].
  53. [53]
    M. Laine and O. Philipsen, The nonperturbative QCD Debye mass from a Wilson line operator, Phys. Lett. B 459 (1999) 259 [hep-lat/9905004] [INSPIRE].
  54. [54]
    Y. Burnier and A. Rothkopf, A gauge invariant Debye mass and the complex heavy-quark potential, arXiv:1506.08684 [INSPIRE].
  55. [55]
    J. Ghiglieri and D. Teaney, Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas, Int. J. Mod. Phys. E 24 (2015) 1530013 [arXiv:1502.03730] [INSPIRE].CrossRefGoogle Scholar
  56. [56]
    M. Panero, K. Rummukainen and A. Schäfer, Lattice study of the jet quenching parameter, Phys. Rev. Lett. 112 (2014) 162001 [arXiv:1307.5850] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].MATHCrossRefADSGoogle Scholar
  58. [58]
    J.O. Andersen and L. Kyllingstad, Four-loop screened perturbation theory, Phys. Rev. D 78 (2008) 076008 [arXiv:0805.4478] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Y. Schröder, A fresh look on three-loop sum-integrals, JHEP 08 (2012) 095 [arXiv:1207.5666] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of Physics and Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Arburg MaschinenbauLoßburgGermany
  3. 3.Grupo de Fısica de Altas EnergıasUniversidad del Bío-BíoChillánChile

Personalised recommendations