Advertisement

Journal of High Energy Physics

, 2015:106 | Cite as

Bootstrapping the O(N) archipelago

  • Filip Kos
  • David Poland
  • David Simmons-Duffin
  • Alessandro Vichi
Open Access
Regular Article - Theoretical Physics

Abstract

We study 3d CFTs with an O(N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O(N) vector ϕ i and the lowest dimension O(N) singlet s, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δ ϕ , Δ s ) to lie inside small islands. We also make rigorous determinations of current two-point functions in the O(2) and O(3) models, with applications to transport in condensed matter systems.

Keywords

Conformal and W Symmetry Global Symmetries 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].ADSGoogle Scholar
  6. [6]
    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].ADSGoogle Scholar
  8. [8]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    S. Rychkov, Conformal bootstrap in three dimensions?, arXiv:1111.2115 [INSPIRE].
  12. [12]
    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].ADSGoogle Scholar
  13. [13]
    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d, JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=4 \) superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    S. El-Showk et al., Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP 09 (2014) 144 [arXiv:1310.3757] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    D. Bashkirov, Bootstrapping the N = 1 SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].
  20. [20]
    M. Berkooz, R. Yacoby and A. Zait, Bounds on \( \mathcal{N}=1 \) superconformal theories with global symmetries, JHEP 08 (2014) 008 [Erratum ibid. 01 (2015) 132] [arXiv:1402.6068] [INSPIRE].
  21. [21]
    Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev. D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].ADSGoogle Scholar
  22. [22]
    Y. Nakayama and T. Ohtsuki, Five dimensional O(N)-symmetric CFTs from conformal bootstrap, Phys. Lett. B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    L.F. Alday and A. Bissi, Generalized bootstrap equations for \( \mathcal{N}=4 \) SCFT, JHEP 02 (2015) 101 [arXiv:1404.5864] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N}=8 \) superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    F. Caracciolo, A.C. Echeverri, B. von Harling and M. Serone, Bounds on OPE coefficients in 4D conformal field theories, JHEP 10 (2014) 020 [arXiv:1406.7845] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    Y. Nakayama and T. Ohtsuki, Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev. D 91 (2015) 021901 [arXiv:1407.6195] [INSPIRE].ADSGoogle Scholar
  27. [27]
    M.F. Paulos, JuliBootS: a hands-on guide to the conformal bootstrap, arXiv:1412.4127 [INSPIRE].
  28. [28]
    J.-B. Bae and S.-J. Rey, Conformal bootstrap approach to O(N) fixed points in five dimensions, arXiv:1412.6549 [INSPIRE].
  29. [29]
    C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The \( \mathcal{N}=2 \) superconformal bootstrap, arXiv:1412.7541 [INSPIRE].
  30. [30]
    S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N) vector models in 4 < d < 6, Phys. Rev. D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].ADSGoogle Scholar
  31. [31]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional supersymmetric Ising model, Phys. Rev. Lett. 115 (2015) 051601 [arXiv:1502.04124] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP 08 (2015) 142 [arXiv:1503.02081] [INSPIRE].Google Scholar
  33. [33]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    I. Heemskerk and J. Sully, More holography from conformal field theory, JHEP 09 (2010) 099 [arXiv:1006.0976] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    C. Beem et al., Infinite chiral symmetry in four dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  38. [38]
    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    C. Beem, L. Rastelli and B.C. van Rees, W symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    L.F. Alday, A. Bissi and T. Lukowski, Lessons from crossing symmetry at large-N, JHEP 06 (2015) 074 [arXiv:1410.4717] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, Exact correlators of BPS operators from the 3d superconformal bootstrap, JHEP 03 (2015) 130 [arXiv:1412.0334] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  42. [42]
    A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, arXiv:1502.01437 [INSPIRE].
  43. [43]
    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, arXiv:1502.07707 [INSPIRE].
  44. [44]
    A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP 07 (2015) 026 [arXiv:1504.00772] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    A.L. Fitzpatrick, J. Kaplan, M.T. Walters and J. Wang, Eikonalization of conformal blocks, JHEP 09 (2015) 019 [arXiv:1504.01737] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    F. Gliozzi, More constraining conformal bootstrap, Phys. Rev. Lett. 111 (2013) 161602 [arXiv:1307.3111] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from conformal bootstrap, JHEP 10 (2014) 042 [arXiv:1403.6003] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-Minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  51. [51]
    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  54. [54]
    E. Katz, S. Sachdev, E.S. Sørensen and W. Witczak-Krempa, Conformal field theories at nonzero temperature: operator product expansions, Monte Carlo and holography, Phys. Rev. B 90 (2014) 245109 [arXiv:1409.3841] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    J.A. Lipa, J.A. Nissen, D.A. Stricker, D.R. Swanson and T.C.P. Chui, Specific heat of liquid helium in zero gravity very near the lambda point, Phys. Rev. B 68 (2003) 174518 [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    M. Campostrini, M. Hasenbusch, A. Pelissetto and E. Vicari, Theoretical estimates of the critical exponents of the superfluid transition in 4 He by lattice methods, Phys. Rev. B 74 (2006) 144506 [cond-mat/0605083] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    P. Calabrese and P. Parruccini, Harmonic crossover exponents in O(n) models with the pseudo-ϵ expansion approach, Phys. Rev. B 71 (2005) 064416 [cond-mat/0411027] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi and E. Vicari, Critical exponents and equation of state of the three-dimensional Heisenberg universality class, Phys. Rev. B 65 (2002) 144520 [cond-mat/0110336] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    M. Hasenbusch, Eliminating leading corrections to scaling in the three-dimensional O(N)-symmetric ϕ 4 model: N = 3 and 4, J. Phys. A 34 (2001) 8221 [cond-mat/0010463] [INSPIRE].
  60. [60]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  61. [61]
    A. Petkou, Conserved currents, consistency relations and operator product expansions in the conformally invariant O(N) vector model, Annals Phys. 249 (1996) 180 [hep-th/9410093] [INSPIRE].MATHMathSciNetCrossRefADSGoogle Scholar
  62. [62]
    A.C. Petkou, C T and C J up to next-to-leading order in 1/N in the conformally invariant O(N) vector model for 2 < d < 4, Phys. Lett. B 359 (1995) 101 [hep-th/9506116] [INSPIRE].CrossRefADSGoogle Scholar
  63. [63]
    S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    M.-C. Cha, M.P.A. Fisher, S.M. Girvin, M. Wallin and A.P. Young, Universal conductivity of two-dimensional films at the superconductor-insulator transition, Phys. Rev. B 44 (1991) 6883.CrossRefADSGoogle Scholar
  65. [65]
    J. Šmakov and E. Sørensen, Universal scaling of the conductivity at the superfluid-insulator phase transition, Phys. Rev. Lett. 95 (2005) 180603 [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    W. Witczak-Krempa, E. Sørensen and S. Sachdev, The dynamics of quantum criticality via quantum Monte Carlo and holography, Nature Phys. 10 (2014) 361 [arXiv:1309.2941] [INSPIRE].CrossRefADSGoogle Scholar
  67. [67]
    K. Chen, L. Liu, Y. Deng, L. Pollet and N. Prokof’ev, Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system, Phys. Rev. Lett. 112 (2014) 030402 [arXiv:1309.5635] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    S. Gazit, D. Podolsky and A. Auerbach, Critical capacitance and charge-vortex duality near the superfluid-to-insulator transition, Phys. Rev. Lett. 113 (2014) 240601 [arXiv:1407.1055].CrossRefADSGoogle Scholar
  69. [69]
    L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ε dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].ADSGoogle Scholar
  70. [70]
    L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Three loop analysis of the critical O(N) models in 6 − ε dimensions, Phys. Rev. D 91 (2015) 045011 [arXiv:1411.1099] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Filip Kos
    • 1
  • David Poland
    • 1
  • David Simmons-Duffin
    • 2
  • Alessandro Vichi
    • 3
  1. 1.Department of PhysicsYale UniversityNew HavenU.S.A.
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonU.S.A.
  3. 3.Theory Division, CERNGenevaSwitzerland

Personalised recommendations