Journal of High Energy Physics

, 2015:99 | Cite as

LHC τ -rich tests of lepton-specific 2HDM for (g − 2) μ

  • Eung Jin Chun
  • Zhaofeng Kang
  • Michihisa Takeuchi
  • Yue-Lin Sming Tsai
Open Access
Regular Article - Theoretical Physics


The lepton-sepcific (or type X) 2HDM (L2HDM) is an attractive new physics candidate explaining the muon g − 2 anomaly requiring a light CP-odd boson A and large tan β. This scenario leads to τ -rich signatures, such as 3τ , 4τ and 4τ + W/Z, which can be readily accessible at the LHC. We first study the whole L2HDM parameter space to identify allowed regions of extra Higgs boson masses as well as two couplings λ hAA and ξ h l which determine the 125 GeV Higgs boson decays hτ + τ and hAA/AA (τ + τ ), respectively. This motivates us to set up two regions of interest: (A) m A m H m H ± , and (B) m A m H ± ∼ \( \mathcal{O} \)(100)GeV ≪ m H , for which derive the current constraints by adopting the chargino-neutralino search at the LHC8, and then analyze the LHC14 prospects by implementing τ -tagging algorithm. A correlated study of the upcoming precision determination of the 125 GeV Higgs boson decay properties as well as the observation of multi-tau events at the next runs of LHC will be able to shed light on the L2HDM option for the muon g − 2.


Phenomenological Models Hadronic Colliders 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Muon g-2 collaboration, H.N. Brown et al., Precise measurement of the positive muon anomalous magnetic moment, Phys. Rev. Lett. 86 (2001) 2227 [hep-ex/0102017] [INSPIRE].
  2. [2]
    Muon g-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
  3. [3]
    A. Dedes and H.E. Haber, Can the Higgs sector contribute significantly to the muon anomalous magnetic moment?, JHEP 05 (2001) 006 [hep-ph/0102297] [INSPIRE].
  4. [4]
    K.-m. Cheung, C.-H. Chou and O.C.W. Kong, Muon anomalous magnetic moment, two Higgs doublet model and supersymmetry, Phys. Rev. D 64 (2001) 111301 [hep-ph/0103183] [INSPIRE].
  5. [5]
    M. Krawczyk, The new (g − 2) for muon measurement and limits on the light Higgs bosons in 2HDM (II), hep-ph/0103223 [INSPIRE].
  6. [6]
    F. Larios, G. Tavares-Velasco and C.P. Yuan, A very light CP odd scalar in the two Higgs doublet model, Phys. Rev. D 64 (2001) 055004 [hep-ph/0103292] [INSPIRE].
  7. [7]
    M. Krawczyk, Precision muon g − 2 results and light Higgs bosons in the 2HDM(II), Acta Phys. Polon. B 33 (2002) 2621 [hep-ph/0208076] [INSPIRE].
  8. [8]
    K. Cheung and O.C.W. Kong, Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [INSPIRE].
  9. [9]
    J. Cao, P. Wan, L. Wu and J.M. Yang, Lepton-specific two-Higgs doublet model: experimental constraints and implication on Higgs phenomenology, Phys. Rev. D 80 (2009) 071701 [arXiv:0909.5148] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.S. Lee and A. Pilaftsis, Radiative corrections to scalar masses and mixing in a scale invariant two Higgs doublet model, Phys. Rev. D 86 (2012) 035004 [arXiv:1201.4891] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J. Guo and Z. Kang, Higgs naturalness and dark matter stability by scale invariance, Nucl. Phys. B 898 (2015) 415 [arXiv:1401.5609] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  12. [12]
    A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    L. Wang and X.-F. Han, A light pseudoscalar of 2HDM confronted with muon g-2 and experimental constraints, JHEP 05 (2015) 039 [arXiv:1412.4874] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    T. Abe, R. Sato and K. Yagyu, Lepton-specific two Higgs doublet model as a solution of muon g − 2 anomaly, JHEP 07 (2015) 064 [arXiv:1504.07059] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].ADSGoogle Scholar
  16. [16]
    P.M. Ferreira, R. Guedes, M.O.P. Sampaio and R. Santos, Wrong sign and symmetric limits and non-decoupling in 2HDMs, JHEP 12 (2014) 067 [arXiv:1409.6723] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  18. [18]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  19. [19]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
  22. [22]
    V. Ilisie, New Barr-Zee contributions to (g − 2)μ in two-Higgs-doublet models, JHEP 04 (2015) 077 [arXiv:1502.04199] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].MATHCrossRefADSGoogle Scholar
  24. [24]
    F.S. Queiroz and W. Shepherd, New physics contributions to the muon anomalous magnetic moment: a numerical code, Phys. Rev. D 89 (2014) 095024 [arXiv:1403.2309] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.M. Gerard and M. Herquet, A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett. 98 (2007) 251802 [hep-ph/0703051] [INSPIRE].
  26. [26]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  27. [27]
    J. Bernon, J.F. Gunion, Y. Jiang and S. Kraml, Light Higgs bosons in two-Higgs-doublet models, Phys. Rev. D 91 (2015) 075019 [arXiv:1412.3385] [INSPIRE].ADSGoogle Scholar
  28. [28]
    CMS collaboration, A search for anomalous production of events with three or more leptons using 9.2 fb −1 of \( \sqrt{s}=8 \) TeV CMS data, CMS-PAS-SUS-12-026 (2012).
  29. [29]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    DELPHI collaboration, J. Abdallah et al., Searches for neutral Higgs bosons in extended models, Eur. Phys. J. C 38 (2004) 1 [hep-ex/0410017] [INSPIRE].
  32. [32]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  33. [33]
    ATLAS collaboration, Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector, JHEP 04 (2015) 117 [arXiv:1501.04943] [INSPIRE].
  34. [34]
    M. Krawczyk and D. Temes, 2HDM(II) radiative corrections in leptonic τ decays, Eur. Phys. J. C 44 (2005) 435 [hep-ph/0410248] [INSPIRE].
  35. [35]
    ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  36. [36]
    ATLAS collaboration, Constraints on new phenomena via Higgs coupling measurements with the ATLAS detector, ATLAS-CONF-2014-010 (2014).
  37. [37]
    D. Chowdhury and O. Eberhardt, Global fits of the two-loop renormalized two-Higgs-doublet model with soft Z 2 breaking, arXiv:1503.08216 [INSPIRE].
  38. [38]
    S. Su and B. Thomas, The LHC discovery potential of a leptophilic Higgs, Phys. Rev. D 79 (2009) 095014 [arXiv:0903.0667] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S. Kanemura, K. Tsumura and H. Yokoya, Multi-τ -lepton signatures at the LHC in the two Higgs doublet model, Phys. Rev. D 85 (2012) 095001 [arXiv:1111.6089] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting nonminimal Higgs sectors, Phys. Rev. D 90 (2014) 075001 [arXiv:1406.3294] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2014) 227 [arXiv:1312.2591] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 04 (2014) 169 [arXiv:1402.7029] [INSPIRE].
  44. [44]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].
  45. [45]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  46. [46]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].MATHCrossRefADSGoogle Scholar
  47. [47]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  48. [48]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  49. [49]
    A. Papaefstathiou, K. Sakurai and M. Takeuchi, Higgs boson to di-τ channel in chargino-neutralino searches at the LHC, JHEP 08 (2014) 176 [arXiv:1404.1077] [INSPIRE].CrossRefADSGoogle Scholar
  50. [50]
    ATLAS collaboration, Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 303 [arXiv:1412.7086] [INSPIRE].
  51. [51]
    ATLAS collaboration, Identification of the hadronic decays of τ leptons in 2012 data with the ATLAS detector, ATLAS-CONF-2013-064 (2013).
  52. [52]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    A. Altheimer et al., Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012, Eur. Phys. J. C 74 (2014) 2792 [arXiv:1311.2708] [INSPIRE].
  55. [55]
    A. Katz, M. Son and B. Tweedie, Ditau-jet tagging and boosted higgses from a multi-TeV resonance, Phys. Rev. D 83 (2011) 114033 [arXiv:1011.4523] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Eung Jin Chun
    • 1
  • Zhaofeng Kang
    • 1
  • Michihisa Takeuchi
    • 2
  • Yue-Lin Sming Tsai
    • 2
  1. 1.School of PhysicsKorea Institute for Advanced StudySeoulKorea
  2. 2.Kavli IPMU (WPI)The University of TokyoKashiwaJapan

Personalised recommendations