Journal of High Energy Physics

, 2015:76 | Cite as

Effects of TMD evolution and partonic flavor on e + e annihilation into hadrons

  • Alessandro Bacchetta
  • Miguel G. Echevarria
  • Piet J. G. Mulders
  • Marco Radici
  • Andrea Signori
Open Access
Regular Article - Theoretical Physics


We calculate the transverse momentum dependence in the production of two back-to-back hadrons in electron-positron annihilations at the medium/large energy scales of Bes-III and Belle experiments. We use the parameters of the transverse-momentum-dependent (TMD) fragmentation functions that were recently extracted from the semi-inclusive deep-inelastic-scattering multiplicities at low energy from Hermes. TMD evolution is applied according to different approaches and using different parameters for the nonperturbative part of the evolution kernel, thus exploring the sensitivity of our results to these different choices and to the flavor dependence of parton fragmentation functions. We discuss how experimental measurements could discriminate among the various scenarios.


QCD Phenomenology Deep Inelastic Scattering (Phenomenology) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Bacchetta, M. Diehl, K. Goeke, A. Metz, P.J. Mulders and M. Schlegel, Semi-inclusive deep inelastic scattering at small transverse momentum, JHEP 02 (2007) 093 [hep-ph/0611265] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    V. Barone, F. Bradamante and A. Martin, Transverse-spin and transverse-momentum effects in high-energy processes, Prog. Part. Nucl. Phys. 65 (2010) 267 [arXiv:1011.0909] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    D. Boer et al., Gluons and the quark sea at high energies: Distributions, polarization, tomography, arXiv:1108.1713 [INSPIRE].
  4. [4]
    C.A. Aidala, S.D. Bass, D. Hasch and G.K. Mallot, The Spin Structure of the Nucleon, Rev. Mod. Phys. 85 (2013) 655 [arXiv:1209.2803] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    X.-d. Ji, J.-p. Ma and F. Yuan, QCD factorization for semi-inclusive deep-inelastic scattering at low transverse momentum, Phys. Rev. D 71 (2005) 034005 [hep-ph/0404183] [INSPIRE].
  6. [6]
    J.C. Collins and A. Metz, Universality of soft and collinear factors in hard-scattering factorization, Phys. Rev. Lett. 93 (2004) 252001 [hep-ph/0408249] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    S.J. Brodsky, D.S. Hwang and I. Schmidt, Final state interactions and single spin asymmetries in semiinclusive deep inelastic scattering, Phys. Lett. B 530 (2002) 99 [hep-ph/0201296] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    X.-d. Ji and F. Yuan, Parton distributions in light cone gauge: Where are the final state interactions?, Phys. Lett. B 543 (2002) 66 [hep-ph/0206057] [INSPIRE].
  9. [9]
    A.V. Belitsky, X. Ji and F. Yuan, Final state interactions and gauge invariant parton distributions, Nucl. Phys. B 656 (2003) 165 [hep-ph/0208038] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering, Phys. Lett. B 536 (2002) 43 [hep-ph/0204004] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    D. Boer, P.J. Mulders and F. Pijlman, Universality of T odd effects in single spin and azimuthal asymmetries, Nucl. Phys. B 667 (2003) 201 [hep-ph/0303034] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    J. Collins, Foundations of Perturbative QCD, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge U.K. (2011).Google Scholar
  13. [13]
    M.G. Echevarria, A. Idilbi, A. Schäfer and I. Scimemi, Model-Independent Evolution of Transverse Momentum Dependent Distribution Functions (TMDs) at NNLL, Eur. Phys. J. C 73 (2013) 2636 [arXiv:1208.1281] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    S.M. Aybat, A. Prokudin and T.C. Rogers, Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements, Phys. Rev. Lett. 108 (2012) 242003 [arXiv:1112.4423] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A. Bacchetta and A. Prokudin, Evolution of the helicity and transversity Transverse-Momentum-Dependent parton distributions, Nucl. Phys. B 875 (2013) 536 [arXiv:1303.2129] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Unified treatment of the QCD evolution of all (un-)polarized transverse momentum dependent functions: Collins function as a study case, Phys. Rev. D 90 (2014) 014003 [arXiv:1402.0869] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Collins, Different approaches to TMD Evolution with scale, EPJ Web Conf. 85 (2015) 01002 [arXiv:1409.5408] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    Z.-B. Kang, A. Prokudin, P. Sun and F. Yuan, Extraction of Quark Transversity Distribution and Collins Fragmentation Functions with QCD Evolution, arXiv:1505.05589 [INSPIRE].
  19. [19]
    R. Angeles-Martinez et al., Transverse momentum dependent (TMD) parton distribution functions: status and prospects, arXiv:1507.05267 [INSPIRE].
  20. [20]
    HERMES collaboration, A. Airapetian et al., Multiplicities of charged pions and kaons from semi-inclusive deep-inelastic scattering by the proton and the deuteron, Phys. Rev. D 87 (2013) 074029 [arXiv:1212.5407] [INSPIRE].
  21. [21]
    COMPASS collaboration, C. Adolph et al., Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/c, Eur. Phys. J. C 73 (2013) 2531 [arXiv:1305.7317] [INSPIRE].
  22. [22]
    European Muon collaboration, M. Arneodo et al., Transverse Momentum and Its Compensation in Current and Target Jets in Deep Inelastic Muon - Proton Scattering, Phys. Lett. B 149 (1984) 415 [INSPIRE].
  23. [23]
    H1 collaboration, C. Adloff et al., Measurement of charged particle transverse momentum spectra in deep inelastic scattering, Nucl. Phys. B 485 (1997) 3 [hep-ex/9610006] [INSPIRE].
  24. [24]
    H. Mkrtchyan et al., Transverse momentum dependence of semi-inclusive pion production, Phys. Lett. B 665 (2008) 20 [arXiv:0709.3020] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    CLAS collaboration, M. Osipenko et al., Measurement of unpolarized semi-inclusive π + electroproduction off the proton, Phys. Rev. D 80 (2009) 032004 [arXiv:0809.1153] [INSPIRE].
  26. [26]
    R. Asaturyan et al., Semi-Inclusive Charged-Pion Electroproduction off Protons and Deuterons: Cross sections, Ratios and Access to the Quark-Parton Model at Low Energies, Phys. Rev. C 85 (2012) 015202 [arXiv:1103.1649] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Signori, A. Bacchetta, M. Radici and G. Schnell, Investigations into the flavor dependence of partonic transverse momentum, JHEP 11 (2013) 194 [arXiv:1309.3507] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    S. Forte and G. Watt, Progress in the Determination of the Partonic Structure of the Proton, Ann. Rev. Nucl. Part. Sci. 63 (2013) 291 [arXiv:1301.6754] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.F. Owens, A. Accardi and W. Melnitchouk, Global parton distributions with nuclear and finite-Q 2 corrections, Phys. Rev. D 87 (2013) 094012 [arXiv:1212.1702] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    A. Bacchetta, F. Conti and M. Radici, Transverse-momentum distributions in a diquark spectator model, Phys. Rev. D 78 (2008) 074010 [arXiv:0807.0323] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. Bacchetta, M. Radici, F. Conti and M. Guagnelli, Weighted azimuthal asymmetries in a diquark spectator model, Eur. Phys. J. A 45 (2010) 373 [arXiv:1003.1328] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    M. Wakamatsu, Transverse momentum distributions of quarks in the nucleon from the Chiral Quark Soliton Model, Phys. Rev. D 79 (2009) 094028 [arXiv:0903.1886] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Bourrely, F. Buccella and J. Soffer, Semiinclusive DIS cross sections and spin asymmetries in the quantum statistical parton distributions approach, Phys. Rev. D 83 (2011) 074008 [arXiv:1008.5322] [INSPIRE].ADSGoogle Scholar
  36. [36]
    H.H. Matevosyan, W. Bentz, I.C. Cloet and A.W. Thomas, Transverse Momentum Dependent Fragmentation and Quark Distribution Functions from the NJL-jet Model, Phys. Rev. D 85 (2012) 014021 [arXiv:1111.1740] [INSPIRE].ADSGoogle Scholar
  37. [37]
    P. Schweitzer, M. Strikman and C. Weiss, Intrinsic transverse momentum and parton correlations from dynamical chiral symmetry breaking, JHEP 01 (2013) 163 [arXiv:1210.1267] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    B.U. Musch, P. Hägler, J.W. Negele and A. Schäfer, Exploring quark transverse momentum distributions with lattice QCD, Phys. Rev. D 83 (2011) 094507 [arXiv:1011.1213] [INSPIRE].ADSGoogle Scholar
  39. [39]
    L.P. Gamberg, A. Mukherjee and P.J. Mulders, Spectral analysis of gluonic pole matrix elements for fragmentation, Phys. Rev. D 77 (2008) 114026 [arXiv:0803.2632] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Meissner and A. Metz, Partonic pole matrix elements for fragmentation, Phys. Rev. Lett. 102 (2009) 172003 [arXiv:0812.3783] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    L.P. Gamberg, A. Mukherjee and P.J. Mulders, A model independent analysis of gluonic pole matrix elements and universality of TMD fragmentation functions, Phys. Rev. D 83 (2011) 071503 [arXiv:1010.4556] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Bacchetta, U. D’Alesio, M. Diehl and C.A. Miller, Single-spin asymmetries: The Trento conventions, Phys. Rev. D 70 (2004) 117504 [hep-ph/0410050] [INSPIRE].ADSGoogle Scholar
  43. [43]
    D. Boer, R. Jakob and P.J. Mulders, Asymmetries in polarized hadron production in e + e annihilation up to order 1/Q, Nucl. Phys. B 504 (1997) 345 [hep-ph/9702281] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    M.G. Echevarria, A. Idilbi and I. Scimemi, Factorization Theorem For Drell-Yan At Low q T And Transverse Momentum Distributions On-The-Light-Cone, JHEP 07 (2012) 002 [arXiv:1111.4996] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    D. Boer, L. Gamberg, B. Musch and A. Prokudin, Bessel-Weighted Asymmetries in Semi Inclusive Deep Inelastic Scattering, JHEP 10 (2011) 021 [arXiv:1107.5294] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    A. Signori, A. Bacchetta and M. Radici, Flavor dependence of unpolarized TMDs from semi-inclusive pion production, Int. J. Mod. Phys. Conf. Ser. 25 (2014) 1460020 [arXiv:1309.5929] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    A. Signori, A. Bacchetta and M. Radici, Phenomenology of unpolarized TMDs from Semi-Inclusive DIS data, PoS DIS2014 (2014) 202 [arXiv:1407.2445] [INSPIRE].
  48. [48]
    D. de Florian, R. Sassot and M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties, Phys. Rev. D 75 (2007) 114010 [hep-ph/0703242] [INSPIRE].ADSGoogle Scholar
  49. [49]
    P.M. Nadolsky, D.R. Stump and C.P. Yuan, Phenomenology of multiple parton radiation in semiinclusive deep inelastic scattering, Phys. Rev. D 64 (2001) 114011 [hep-ph/0012261] [INSPIRE].ADSGoogle Scholar
  50. [50]
    F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Collins and T. Rogers, Understanding the large-distance behavior of transverse-momentum-dependent parton densities and the Collins-Soper evolution kernel, Phys. Rev. D 91 (2015) 074020 [arXiv:1412.3820] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A.V. Konychev and P.M. Nadolsky, Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production, Phys. Lett. B 633 (2006) 710 [hep-ph/0506225] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    C.A. Aidala, B. Field, L.P. Gamberg and T.C. Rogers, Limits on transverse momentum dependent evolution from semi-inclusive deep inelastic scattering at moderate Q, Phys. Rev. D 89 (2014) 094002 [arXiv:1401.2654] [INSPIRE].ADSGoogle Scholar
  54. [54]
    M. Boglione and P.J. Mulders, Time reversal odd fragmentation and distribution functions in pp and ep single spin asymmetries, Phys. Rev. D 60 (1999) 054007 [hep-ph/9903354] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Bacchetta, R. Kundu, A. Metz and P.J. Mulders, Estimate of the Collins fragmentation function in a chiral invariant approach, Phys. Rev. D 65 (2002) 094021 [hep-ph/0201091] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Schweitzer and A. Bacchetta, Azimuthal single spin asymmetries in SIDIS in the light of chiral symmetry breaking, Nucl. Phys. A 732 (2004) 106 [hep-ph/0310318] [INSPIRE].CrossRefADSGoogle Scholar
  57. [57]
    A. Bacchetta, L.P. Gamberg, G.R. Goldstein and A. Mukherjee, Collins fragmentation function for pions and kaons in a spectator model, Phys. Lett. B 659 (2008) 234 [arXiv:0707.3372] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    U. D’Alesio and F. Murgia, Parton intrinsic motion in inclusive particle production: Unpolarized cross sections, single spin asymmetries and the Sivers effect, Phys. Rev. D 70 (2004) 074009 [hep-ph/0408092] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Alessandro Bacchetta
    • 1
    • 2
  • Miguel G. Echevarria
    • 3
    • 4
  • Piet J. G. Mulders
    • 3
    • 4
  • Marco Radici
    • 1
  • Andrea Signori
    • 3
    • 4
  1. 1.INFN Sezione di PaviaPaviaItaly
  2. 2.Dipartimento di FisicaUniversita di PaviaPaviaItaly
  3. 3.Department of Physics and AstronomyVU University AmsterdamAmsterdamThe Netherlands
  4. 4.NikhefAmsterdamThe Netherlands

Personalised recommendations