Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

  • Thamys Abrahão
  • Hisakazu Minakata
  • Hiroshi Nunokawa
  • Alexander A. Quiroga
Open Access
Regular Article - Theoretical Physics


The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (∼50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7.5 (5.5) × 10−11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.


Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    R. Cowsik, Limits on the Radiative Decay of Neutrinos, Phys. Rev. Lett. 39 (1977) 784 [Erratum ibid. 40 (1978) 201] [INSPIRE].
  2. [2]
    A. De Rujula and S.L. Glashow, Galactic Neutrinos and UV Astronomy, Phys. Rev. Lett. 45 (1980) 942 [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  4. [4]
    Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    G.B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    J. Schechter and J.W.F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774 [INSPIRE].ADSGoogle Scholar
  7. [7]
    V.D. Barger, J.G. Learned, P. Lipari, M. Lusignoli, S. Pakvasa and T.J. Weiler, Neutrino decay and atmospheric neutrinos, Phys. Lett. B 462 (1999) 109 [hep-ph/9907421] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    J.F. Beacom and N.F. Bell, Do solar neutrinos decay?, Phys. Rev. D 65 (2002) 113009 [hep-ph/0204111] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A.S. Joshipura, E. Masso and S. Mohanty, Constraints on decay plus oscillation solutions of the solar neutrino problem, Phys. Rev. D 66 (2002) 113008 [hep-ph/0203181] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Bandyopadhyay, S. Choubey and S. Goswami, Neutrino decay confronts the SNO data, Phys. Lett. B 555 (2003) 33 [hep-ph/0204173] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    J.M. Berryman, A. de Gouvêa and D. Hernandez, Solar Neutrinos and the Decaying Neutrino Hypothesis, Phys. Rev. D 92 (2015) 073003 [arXiv:1411.0308] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Picoreti, M.M. Guzzo, P.C. de Holanda and O.L.G. Peres, Neutrino Decay and Solar Neutrino Seasonal Effect, arXiv:1506.08158 [INSPIRE].
  13. [13]
    J.A. Frieman, H.E. Haber and K. Freese, Neutrino Mixing, Decays and Supernova Sn1987a, Phys. Lett. B 200 (1988) 115 [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    Kamiokande-II collaboration, K. Hirata et al., Observation of a Neutrino Burst from the Supernova SN 1987a, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE].
  15. [15]
    R.M. Bionta et al., Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud, Phys. Rev. Lett. 58 (1987) 1494 [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    IceCube collaboration, M.G. Aartsen et al., Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856 [arXiv:1311.5238] [INSPIRE].
  17. [17]
    J.F. Beacom, N.F. Bell, D. Hooper, S. Pakvasa and T.J. Weiler, Decay of high-energy astrophysical neutrinos, Phys. Rev. Lett. 90 (2003) 181301 [hep-ph/0211305] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    P. Baerwald, M. Bustamante and W. Winter, Neutrino Decays over Cosmological Distances and the Implications for Neutrino Telescopes, JCAP 10 (2012) 020 [arXiv:1208.4600] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    V.D. Barger, W.-Y. Keung and S. Pakvasa, Majoron Emission by Neutrinos, Phys. Rev. D 25 (1982) 907 [INSPIRE].ADSGoogle Scholar
  20. [20]
    A.P. Lessa and O.L.G. Peres, Revising limits on neutrino-Majoron couplings, Phys. Rev. D 75 (2007) 094001 [hep-ph/0701068] [INSPIRE].ADSGoogle Scholar
  21. [21]
    Y. Farzan, Strategies to link tiny neutrino masses with huge missing mass of the Universe, Int. J. Mod. Phys. A 26 (2011) 2461 [arXiv:1106.2948] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].MATHCrossRefADSGoogle Scholar
  23. [23]
    M.C. Gonzalez-Garcia and M. Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663 (2008) 405 [arXiv:0802.3699] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    Super-Kamiokande collaboration, R. Wendell et al., Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II and III, Phys. Rev. D 81 (2010) 092004 [arXiv:1002.3471] [INSPIRE].
  25. [25]
    R.A. Gomes, A.L.G. Gomes and O.L.G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    JUNO collaboration, M. He, Jiangmen Underground Neutrino Observatory, Nucl. Part. Phys. Proc. 265-266 (2015) 111 [arXiv:1412.4195] [INSPIRE].
  27. [27]
    J. Park, Study of Neutrino Mass Hierarchy with RENO-50, PoS(Neutel 2013)076.
  28. [28]
    H. Minakata, H. Nunokawa, W.J.C. Teves and R. Zukanovich Funchal, Reactor measurement of theta(12): Principles, accuracies and physics potentials, Phys. Rev. D 71 (2005) 013005 [hep-ph/0407326] [INSPIRE].ADSGoogle Scholar
  29. [29]
    A. Bandyopadhyay, S. Choubey, S. Goswami and S.T. Petcov, High precision measurements of theta(solar) in solar and reactor neutrino experiments, Phys. Rev. D 72 (2005) 033013 [hep-ph/0410283] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S.-F. Ge, K. Hagiwara, N. Okamura and Y. Takaesu, Determination of mass hierarchy with medium baseline reactor neutrino experiments, JHEP 05 (2013) 131 [arXiv:1210.8141] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    F. Capozzi, E. Lisi and A. Marrone, Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events, Phys. Rev. D 89 (2014) 013001 [arXiv:1309.1638] [INSPIRE].ADSGoogle Scholar
  32. [32]
    E. Lisi, A. Marrone and D. Montanino, Probing possible decoherence effects in atmospheric neutrino oscillations, Phys. Rev. Lett. 85 (2000) 1166 [hep-ph/0002053] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    P. Bakhti, Y. Farzan and T. Schwetz, Revisiting the quantum decoherence scenario as an explanation for the LSND anomaly, JHEP 05 (2015) 007 [arXiv:1503.05374] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    Daya Bay collaboration, F.P. An et al., New Measurement of Antineutrino Oscillation with the Full Detector Configuration at Daya Bay, Phys. Rev. Lett. 115 (2015) 111802 [arXiv:1505.03456] [INSPIRE].
  35. [35]
    L. Zhan, Recent results from Daya Bay, talk at XVI International Workshop on Neutrino Telescopes, Venice Italy, 2–6 March 2015.Google Scholar
  36. [36]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Updated fit to three neutrino mixing: status of leptonic CP-violation, JHEP 11 (2014) 052 [arXiv:1409.5439] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    P. Huber, On the determination of anti-neutrino spectra from nuclear reactors, Phys. Rev. C 84 (2011) 024617 [Erratum ibid. C 85 (2012) 029901] [arXiv:1106.0687] [INSPIRE].
  38. [38]
    T.A. Mueller et al., Improved Predictions of Reactor Antineutrino Spectra, Phys. Rev. C 83 (2011) 054615 [arXiv:1101.2663] [INSPIRE].ADSGoogle Scholar
  39. [39]
    H. Minakata, H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Determination of the neutrino mass hierarchy via the phase of the disappearance oscillation probability with a monochromatic anti-electron-neutrino source, Phys. Rev. D 76 (2007) 053004 [Erratum ibid. D 76 (2007) 079901] [hep-ph/0701151] [INSPIRE].
  40. [40]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].ADSGoogle Scholar
  41. [41]
    Daya Bay collaboration, F.P. An et al., Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay, Phys. Rev. Lett. 112 (2014) 061801 [arXiv:1310.6732] [INSPIRE].
  42. [42]
    X. Qian, D.A. Dwyer, R.D. McKeown, P. Vogel, W. Wang and C. Zhang, Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response, Phys. Rev. D 87 (2013) 033005 [arXiv:1208.1551] [INSPIRE].ADSGoogle Scholar
  43. [43]
    X. Qian, A. Tan, W. Wang, J.J. Ling, R.D. McKeown and C. Zhang, Statistical Evaluation of Experimental Determinations of Neutrino Mass Hierarchy, Phys. Rev. D 86 (2012) 113011 [arXiv:1210.3651] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E. Ciuffoli, J. Evslin and X. Zhang, Confidence in a neutrino mass hierarchy determination, JHEP 01 (2014) 095 [arXiv:1305.5150] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    M. Lindner, T. Ohlsson and W. Winter, A Combined treatment of neutrino decay and neutrino oscillations, Nucl. Phys. B 607 (2001) 326 [hep-ph/0103170] [INSPIRE].CrossRefADSGoogle Scholar
  46. [46]
    A. Strumia and F. Vissani, Precise quasielastic neutrino/nucleon cross-section, Phys. Lett. B 564 (2003) 42 [astro-ph/0302055] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    Daya Bay collaboration, F.P. An et al., A side-by-side comparison of Daya Bay antineutrino detectors, Nucl. Instrum. Meth. A 685 (2012) 78 [arXiv:1202.6181] [INSPIRE].
  48. [48]
    Daya Bay collaboration, F.P. An et al., Improved Measurement of Electron Antineutrino Disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].
  49. [49]
    Y.-F. Li, J. Cao, Y. Wang and L. Zhan, Unambiguous Determination of the Neutrino Mass Hierarchy Using Reactor Neutrinos, Phys. Rev. D 88 (2013) 013008 [arXiv:1303.6733] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Thamys Abrahão
    • 1
  • Hisakazu Minakata
    • 2
    • 3
  • Hiroshi Nunokawa
    • 1
    • 4
  • Alexander A. Quiroga
    • 1
  1. 1.Departamento de FísicaPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil
  3. 3.Instituto de Física Teórica, UAM/CSICCantoblancoSpain
  4. 4.Institute for Nuclear TheoryUniversity of WashingtonSeattleU.S.A.

Personalised recommendations