Journal of High Energy Physics

, 2013:196 | Cite as

Conformal couplings of Galileons to other degrees of freedom

  • Gianmassimo Tasinato


We discuss a formulation of Galileon actions in terms of matrix determinants in four dimensions. This approach allows one to straightforwardly determine derivative couplings between Galileons and scalar or vector degrees of freedom that lead to equations of motion with at most two space-time derivatives. We use this method to easily build generalizations of Galileon set-ups preserving conformal symmetry, finding explicit examples of couplings between Galileons and additional degrees of freedom that preserve the Galileon conformal invariance. We discuss various physical applications of our method and of our results.


Cosmology of Theories beyond the SM Classical Theories of Gravity Conformal and W Symmetry 


  1. [1]
    C. Burgess, The cosmological constant problem: why its hard to get dark energy from micro-physics, arXiv:1309.4133 [INSPIRE].
  2. [2]
    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    K. Hinterbichler, M. Trodden and D. Wesley, Multi-field Galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K. Van Acoleyen and J. Van Doorsselaere, Galileons from Lovelock actions, Phys. Rev. D 83 (2011) 084025 [arXiv:1102.0487] [INSPIRE].ADSGoogle Scholar
  8. [8]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  9. [9]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S. Fubini, A new approach to conformal invariant field theories, Nuovo Cim. A 34 (1976) 521 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Khoury, J.-L. Lehners and B.A. Ovrut, Supersymmetric Galileons, Phys. Rev. D 84 (2011) 043521 [arXiv:1103.0003] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Koehn, J.-L. Lehners and B. Ovrut, Supersymmetric Galileons have ghosts, Phys. Rev. D 88 (2013) 023528 [arXiv:1302.0840] [INSPIRE].ADSGoogle Scholar
  13. [13]
    F. Farakos, C. Germani and A. Kehagias, On ghost-free supersymmetric Galileons, JHEP 11 (2013) 045 [arXiv:1306.2961] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    D. Fairlie, Comments on Galileons, J. Phys. A 44 (2011) 305201 [arXiv:1102.1594] [INSPIRE].MathSciNetGoogle Scholar
  15. [15]
    T.L. Curtright and D.B. Fairlie, A Galileon primer, arXiv:1212.6972 [INSPIRE].
  16. [16]
    C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: all scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Koyama, G. Niz and G. Tasinato, Strong interactions and exact solutions in non-linear massive gravity, Phys. Rev. D 84 (2011) 064033 [arXiv:1104.2143] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-Galileon theory I: motivation and formulation, JHEP 12 (2010) 031 [arXiv:1007.5424] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Koyama, G. Niz and G. Tasinato, The self-accelerating universe with vectors in massive gravity, JHEP 12 (2011) 065 [arXiv:1110.2618] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    G. Gabadadze, K. Hinterbichler, D. Pirtskhalava and Y. Shang, On the potential for general relativity and its geometry, Phys. Rev. D 88 (2013) 084003 [arXiv:1307.2245] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N.A. Ondo and A.J. Tolley, Complete decoupling limit of ghost-free massive gravity, JHEP 11 (2013) 059 [arXiv:1307.4769] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    G. Tasinato, K. Koyama and N. Khosravi, The role of vector fields in modified gravity scenarios, arXiv:1307.0077 [INSPIRE].
  24. [24]
    G. Tasinato, K. Koyama and G. Niz, Exact solutions in massive gravity, Class. Quant. Grav. 30 (2013) 184002 [arXiv:1304.0601] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Tasinato, K. Koyama and G. Niz, Vector instabilities and self-acceleration in the decoupling limit of massive gravity, Phys. Rev. D 87 (2013) 064029 [arXiv:1210.3627] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Jackiw and S.-Y. Pi, Tutorial on scale and conformal symmetries in diverse dimensions, J. Phys. A 44 (2011) 223001 [arXiv:1101.4886] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    C. de Rham, M. Fasiello and A.J. Tolley, Galileon duality, arXiv:1308.2702 [INSPIRE].
  28. [28]
    P. Creminelli, M. Serone and E. Trincherini, Non-linear representations of the conformal group and mapping of Galileons, JHEP 10 (2013) 040 [arXiv:1306.2946] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Deser and G. Gibbons, Born-Infeld-Einstein actions?, Class. Quant. Grav. 15 (1998) L35 [hep-th/9803049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Institute of Cosmology & GravitationUniversity of PortsmouthPortsmouthU.K

Personalised recommendations