Advertisement

Journal of High Energy Physics

, 2013:181 | Cite as

Higher order corrections to the trilinear Higgs self-couplings in the real NMSSM

  • Dao Thi Nhung
  • Margarete Mühlleitner
  • Juraj Streicher
  • Kathrin Walz
Article

Abstract

After the discovery of a Higgs-like boson by the LHC experiments ATLAS and CMS, it is of crucial importance to determine its properties in order to not only identify it as the boson responsible for electroweak symmetry breaking but also to clarify the question if it is a Standard Model (SM) Higgs boson or the Higgs particle of some extension beyond the SM as e.g. supersymmetry. In this context, the precise prediction of the Higgs parameters as masses and couplings plays a crucial role for the proper distinction between different models. In extension of previous works on the loop-corrected Higgs boson masses of the Next-to-Minimal Supersymmetric Extension of the SM (NMSSM), we present here the calculation of the loop-corrected trilinear NMSSM Higgs self-couplings. The loop corrections turn out to have a substantial impact on the decay widths of Higgs-to-Higgs decays and on the production cross section of Higgs pairs via gluon fusion. They are therefore indispensable for the correct interpretation of the experimental Higgs results.

Keywords

Higgs Physics Beyond Standard Model Supersymmetric Standard Model 

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Updated ATLAS results on the signal strength of the Higgs-like boson for decays into WW and heavy fermion final states, ATLAS-CONF-2012-162 (2012).
  3. [3]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  4. [4]
    CMS Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  5. [5]
    C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: Standard Higgs and Hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Ellis and T. You, Global Analysis of Experimental Constraints on a Possible Higgs-Like Particle with Mass ~125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].ADSGoogle Scholar
  9. [9]
    A. Azatov et al., Determining Higgs couplings with a model-independent analysis of hγγ, JHEP 06 (2012) 134[arXiv:1204.4817] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs Couplings from LHC Data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  13. [13]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass ~125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F. Bonnet, T. Ota, M. Rauch and W. Winter, Interpretation of precision tests in the Higgs sector in terms of physics beyond the Standard Model, Phys. Rev. D 86 (2012) 093014 [arXiv:1207.4599] [INSPIRE].ADSGoogle Scholar
  18. [18]
    T. Plehn and M. Rauch, Higgs Couplings after the Discovery, Europhys. Lett. 100 (2012) 11002 [arXiv:1207.6108] [INSPIRE].Google Scholar
  19. [19]
    G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].ADSGoogle Scholar
  20. [20]
    D. Miller, S. Choi, B. Eberle, M. Muhlleitner and P. Zerwas, Measuring the spin of the Higgs boson, Phys. Lett. B 505 (2001) 149 [hep-ph/0102023] [INSPIRE].ADSGoogle Scholar
  21. [21]
    T. Plehn, D.L. Rainwater and D. Zeppenfeld, Determining the structure of Higgs couplings at the LHC, Phys. Rev. Lett. 88 (2002) 051801 [hep-ph/0105325] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S. Choi, D. Miller, M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSGoogle Scholar
  23. [23]
    K. Odagiri, On azimuthal spin correlations in Higgs plus jet events at LHC, JHEP 03 (2003) 009 [hep-ph/0212215] [INSPIRE].ADSGoogle Scholar
  24. [24]
    C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZZl(1) + l(1) − l(2) + l(2)− at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.R. Ellis, J.S. Lee and A. Pilaftsis, CERN LHC signatures of resonant CP-violation in a minimal supersymmetric Higgs sector, Phys. Rev. D 70 (2004) 075010 [hep-ph/0404167] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S. Choi, J. Kalinowski, Y. Liao and P. Zerwas, H/A Higgs mixing in CP-noninvariant supersymmetric theories, Eur. Phys. J. C 40 (2005) 555 [hep-ph/0407347] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Buszello and P. Marquard, Determination of spin and CP of the Higgs boson from WBF, hep-ph/0603209 [INSPIRE].
  28. [28]
    R.M. Godbole, D. Miller and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Berge, W. Bernreuther and J. Ziethe, Determining the CP parity of Higgs bosons at the LHC in their tau decay channels, Phys. Rev. Lett. 100 (2008) 171605 [arXiv:0801.2297] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Berge and W. Bernreuther, Determining the CP parity of Higgs bosons at the LHC in the tau to 1-prong decay channels, Phys. Lett. B 671 (2009) 470 [arXiv:0812.1910] [INSPIRE].ADSGoogle Scholar
  31. [31]
    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  34. [34]
    N.D. Christensen, T. Han and Y. Li, Testing CP-violation in ZZH Interactions at the LHC, Phys. Lett. B 693 (2010) 28 [arXiv:1005.5393] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [INSPIRE].ADSGoogle Scholar
  36. [36]
    U. De Sanctis, M. Fabbrichesi and A. Tonero, Telling the spin of theHiggs bosonat the LHC, Phys. Rev. D 84 (2011) 015013 [arXiv:1103.1973] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S. Berge, W. Bernreuther, B. Niepelt and H. Spiesberger, How to pin down the CP quantum numbers of a Higgs boson in its tau decays at the LHC, Phys. Rev. D 84 (2011) 116003 [arXiv:1108.0670] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Ellis and D.S. Hwang, Does theHiggshave Spin Zero?, JHEP 09 (2012) 071 [arXiv:1202.6660] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  41. [41]
    R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].
  42. [42]
    D. Stolarski and R. Vega-Morales, Directly Measuring the Tensor Structure of the Scalar Coupling to Gauge Bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].ADSGoogle Scholar
  43. [43]
    J. Ellis, D.S. Hwang, V. Sanz and T. You, A Fast Track towards theHiggsSpin and Parity, JHEP 11 (2012) 134 [arXiv:1208.6002] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Alves, Is the New Resonance Spin 0 or 2? Taking a Step Forward in the Higgs Boson Discovery, Phys. Rev. D 86 (2012) 113010 [arXiv:1209.1037] [INSPIRE].ADSGoogle Scholar
  45. [45]
    S. Choi, M. Muhlleitner and P. Zerwas, Theoretical Basis of Higgs-Spin Analysis in Hγγ and Zγ Decays, Phys. Lett. B 718 (2013) 1031 [arXiv:1209.5268] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J. Ellis, R. Fok, D.S. Hwang, V. Sanz and T. You, DistinguishingHiggsspin hypotheses using γγ and WW * decays, Eur. Phys. J. C 73 (2013) 2488 [arXiv:1210.5229] [INSPIRE].ADSGoogle Scholar
  47. [47]
    J. Ellis, R. Fok, D.S. Hwang, V. Sanz and T. You, DistinguishingHiggsspin hypotheses using γγ and WW * decays, Eur. Phys. J. C 73 (2013) 2488 [arXiv:1210.5229] [INSPIRE].ADSGoogle Scholar
  48. [48]
    Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs Signal and Background in the 2e2μ Golden Channel, JHEP 01 (2013) 182 [arXiv:1211.1959] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Freitas and P. Schwaller, Higgs CP Properties From Early LHC Data, Phys. Rev. D 87 (2013) 055014 [arXiv:1211.1980] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J. Frank, M. Rauch and D. Zeppenfeld, Spin-2 Resonances in Vector-Boson-Fusion Processes at NLO QCD, Phys. Rev. D 87 (2013) 055020 [arXiv:1211.3658] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C. Englert, D. Goncalves-Netto, K. Mawatari and T. Plehn, Higgs Quantum Numbers in Weak Boson Fusion, JHEP 01 (2013) 148 [arXiv:1212.0843] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Djouadi, R. Godbole, B. Mellado and K. Mohan, Probing the spin-parity of the Higgs boson via jet kinematics in vector boson fusion, Phys. Lett. B 723 (2013) 307 [arXiv:1301.4965] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Frank, M. Rauch and D. Zeppenfeld, Higgs Spin Determination in the WW channel and beyond, arXiv:1305.1883 [INSPIRE].
  54. [54]
    R. Godbole, D.J. Miller, K. Mohan and C.D. White, Boosting Higgs CP properties via VH Production at the Large Hadron Collider, arXiv:1306.2573 [INSPIRE].
  55. [55]
    A. Djouadi, W. Kilian, M. Muhlleitner and P. Zerwas, Testing Higgs selfcouplings at e + e linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].ADSGoogle Scholar
  56. [56]
    A. Djouadi, W. Kilian, M. Muhlleitner and P. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].ADSGoogle Scholar
  57. [57]
    M.M. Muhlleitner, Higgs particles in the standard model and supersymmetric theories, hep-ph/0008127 [INSPIRE].
  58. [58]
    U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].ADSGoogle Scholar
  59. [59]
    U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [INSPIRE].ADSGoogle Scholar
  60. [60]
    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].ADSGoogle Scholar
  61. [61]
    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R. Grober and M. Muhlleitner, Composite Higgs Boson Pair Production at the LHC, JHEP 06 (2011) 020 [arXiv:1012.1562] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the b \( \overline{b} \) W + W channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].ADSGoogle Scholar
  65. [65]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP 06 (2013) 016 [arXiv:1301.3492] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSGoogle Scholar
  67. [67]
    G. Cynolter, E. Lendvai and G. Pocsik, Resonance production of three neutral supersymmetric Higgs bosons at LHC, Acta Phys. Polon. B 31 (2000) 1749 [hep-ph/0003008] [INSPIRE].ADSGoogle Scholar
  68. [68]
    T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].
  69. [69]
    T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].ADSGoogle Scholar
  70. [70]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSGoogle Scholar
  71. [71]
    P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].ADSGoogle Scholar
  72. [72]
    P. Fayet, Supersymmetry and Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 64 (1976) 159 [INSPIRE].ADSGoogle Scholar
  73. [73]
    P. Fayet, Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and Strong Interactions, Phys. Lett. B 69 (1977) 489 [INSPIRE].ADSGoogle Scholar
  74. [74]
    P. Fayet, Relations Between the Masses of the Superpartners of Leptons and Quarks, the Goldstino Couplings and the Neutral Currents, Phys. Lett. B 84 (1979) 416.ADSGoogle Scholar
  75. [75]
    H.P. Nilles, M. Srednicki and D. Wyler, Weak Interaction Breakdown Induced by Supergravity, Phys. Lett. B 120 (1983) 346 [INSPIRE].ADSGoogle Scholar
  76. [76]
    J. Frere, D. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSGoogle Scholar
  77. [77]
    J. Derendinger and C.A. Savoy, Quantum Effects and SU(2) × U(1) Breaking in Supergravity Gauge Theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSGoogle Scholar
  78. [78]
    A. Veselov, M. Vysotsky and K. Ter-Martirosian, Low-energy supergravity and the light t quark, Sov. Phys. JETP 63 (1986) 489 [INSPIRE].Google Scholar
  79. [79]
    J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].ADSGoogle Scholar
  81. [81]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Particle spectrum in supersymmetric models with a gauge singlet, Phys. Lett. B 315 (1993) 331 [hep-ph/9307322] [INSPIRE].ADSGoogle Scholar
  82. [82]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Higgs phenomenology of the supersymmetric model with a gauge singlet, Z. Phys. C 67 (1995) 665 [hep-ph/9502206] [INSPIRE].ADSGoogle Scholar
  83. [83]
    U. Ellwanger, M. Rausch de Traubenberg and C.A. Savoy, Phenomenology of supersymmetric models with a singlet, Nucl. Phys. B 492 (1997) 21 [hep-ph/9611251] [INSPIRE].ADSGoogle Scholar
  84. [84]
    U. Ellwanger, Radiative corrections to the neutral Higgs spectrum in supersymmetry with a gauge singlet, Phys. Lett. B 303 (1993) 271 [hep-ph/9302224] [INSPIRE].ADSGoogle Scholar
  85. [85]
    P. Pandita, Radiative corrections to the scalar Higgs masses in a nonminimal supersymmetric Standard Model, Z. Phys. C 59 (1993) 575 [INSPIRE].ADSGoogle Scholar
  86. [86]
    T. Elliott, S. King and P. White, Radiative corrections to Higgs boson masses in the next-to-minimal supersymmetric Standard Model, Phys. Rev. D 49 (1994) 2435 [hep-ph/9308309] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S. King and P. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].ADSGoogle Scholar
  88. [88]
    F. Franke and H. Fraas, Neutralinos and Higgs bosons in the next-to-minimal supersymmetric standard model, Int. J. Mod. Phys. A 12 (1997) 479 [hep-ph/9512366] [INSPIRE].ADSGoogle Scholar
  89. [89]
    D. Miller, R. Nevzorov and P. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].ADSGoogle Scholar
  90. [90]
    M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].MathSciNetADSGoogle Scholar
  91. [91]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSGoogle Scholar
  92. [92]
    U. Ellwanger, Higgs Bosons in the Next-to-Minimal Supersymmetric Standard Model at the LHC, Eur. Phys. J. C 71 (2011) 1782 [arXiv:1108.0157] [INSPIRE].ADSGoogle Scholar
  93. [93]
    K. Ender, T. Graf, M. Muhlleitner and H. Rzehak, Analysis of the NMSSM Higgs Boson Masses at One-Loop Level, Phys. Rev. D 85 (2012) 075024 [arXiv:1111.4952] [INSPIRE].ADSGoogle Scholar
  94. [94]
    T. Graf, R. Grober, M. Muhlleitner, H. Rzehak and K. Walz, Higgs Boson Masses in the Complex NMSSM at One-Loop Level, JHEP 10 (2012) 122 [arXiv:1206.6806] [INSPIRE].ADSGoogle Scholar
  95. [95]
    J.E. Kim and H.P. Nilles, The mu Problem and the Strong CP Problem, Phys. Lett. B 138 (1984) 150 [INSPIRE].MathSciNetADSGoogle Scholar
  96. [96]
    M. Bastero-Gil, C. Hugonie, S. King, D. Roy and S. Vempati, Does LEP prefer the NMSSM?, Phys. Lett. B 489 (2000) 359 [hep-ph/0006198] [INSPIRE].ADSGoogle Scholar
  97. [97]
    A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].ADSGoogle Scholar
  98. [98]
    U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results, JHEP 09 (2011) 105 [arXiv:1107.2472] [INSPIRE].ADSGoogle Scholar
  99. [99]
    G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284] [INSPIRE].ADSGoogle Scholar
  100. [100]
    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].ADSGoogle Scholar
  101. [101]
    J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].ADSGoogle Scholar
  102. [102]
    U. Ellwanger, Radiative corrections to the neutral Higgs spectrum in supersymmetry with a gauge singlet, Phys. Lett. B 303 (1993) 271 [hep-ph/9302224] [INSPIRE].ADSGoogle Scholar
  103. [103]
    T. Elliott, S. King and P. White, Supersymmetric Higgs bosons at the limit, Phys. Lett. B 305 (1993) 71 [hep-ph/9302202] [INSPIRE].ADSGoogle Scholar
  104. [104]
    T. Elliott, S. King and P. White, Squark contributions to Higgs boson masses in the next-to-minimal supersymmetric standard model, Phys. Lett. B 314 (1993) 56 [hep-ph/9305282] [INSPIRE].ADSGoogle Scholar
  105. [105]
    T. Elliott, S. King and P. White, Radiative corrections to Higgs boson masses in the next-to-minimal supersymmetric Standard Model, Phys. Rev. D 49 (1994) 2435 [hep-ph/9308309] [INSPIRE].ADSGoogle Scholar
  106. [106]
    P. Pandita, Radiative corrections to the scalar Higgs masses in a nonminimal supersymmetric Standard Model, Z. Phys. C 59 (1993) 575 [INSPIRE].ADSGoogle Scholar
  107. [107]
    P. Pandita, One loop radiative corrections to the lightest Higgs scalar mass in nonminimal supersymmetric Standard Model, Phys. Lett. B 318 (1993) 338 [INSPIRE].ADSGoogle Scholar
  108. [108]
    U. Ellwanger and C. Hugonie, Yukawa induced radiative corrections to the lightest Higgs boson mass in the NMSSM, Phys. Lett. B 623 (2005) 93 [hep-ph/0504269] [INSPIRE].ADSGoogle Scholar
  109. [109]
    G. Degrassi and P. Slavich, On the radiative corrections to the neutral Higgs boson masses in the NMSSM, Nucl. Phys. B 825 (2010) 119 [arXiv:0907.4682] [INSPIRE].ADSGoogle Scholar
  110. [110]
    F. Staub, W. Porod and B. Herrmann, The Electroweak sector of the NMSSM at the one-loop level, JHEP 10 (2010) 040 [arXiv:1007.4049] [INSPIRE].ADSGoogle Scholar
  111. [111]
    S. Ham, J. Kim, S. Oh and D. Son, The Charged Higgs boson in the next-to-minimal supersymmetric standard model with explicit CP-violation, Phys. Rev. D 64 (2001) 035007 [hep-ph/0104144] [INSPIRE].ADSGoogle Scholar
  112. [112]
    S. Ham, S. Kim, S. OH and D. Son, Higgs bosons of the NMSSM with explicit CP-violation at the ILC, Phys. Rev. D 76 (2007) 115013 [arXiv:0708.2755] [INSPIRE].ADSGoogle Scholar
  113. [113]
    S. Ham, S. Oh and D. Son, Neutral Higgs sector of the next-to-minimal supersymmetric standard model with explicit CP-violation, Phys. Rev. D 65 (2002) 075004 [hep-ph/0110052] [INSPIRE].ADSGoogle Scholar
  114. [114]
    S. Ham, Y. Jeong and S. Oh, Radiative CP-violation in the Higgs sector of the next-to-minimal supersymmetric model, hep-ph/0308264 [INSPIRE].
  115. [115]
    K. Funakubo and S. Tao, The Higgs sector in the next-to-MSSM, Prog. Theor. Phys. 113 (2005) 821 [hep-ph/0409294] [INSPIRE].ADSGoogle Scholar
  116. [116]
    K. Cheung, T.-J. Hou, J.S. Lee and E. Senaha, The Higgs Boson Sector of the Next-to-MSSM with CP-violation, Phys. Rev. D 82 (2010) 075007 [arXiv:1006.1458] [INSPIRE].ADSGoogle Scholar
  117. [117]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  118. [118]
    K. Chetyrkin and M. Steinhauser, The relation between the MS-bar and the on-shell quark mass at order \( \alpha_s^3 \), Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].ADSGoogle Scholar
  119. [119]
    K. Melnikov and T.V. Ritbergen, The Three loop relation between the MS-bar and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].ADSGoogle Scholar
  120. [120]
    M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the t \( \overline{b} \) H + interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSGoogle Scholar
  121. [121]
    L. Avdeev and M.Y. Kalmykov, Pole masses of quarks in dimensional reduction, Nucl. Phys. B 502 (1997) 419 [hep-ph/9701308] [INSPIRE].ADSGoogle Scholar
  122. [122]
    R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Dimensional Reduction applied to QCD at three loops, JHEP 09 (2006) 053 [hep-ph/0607240] [INSPIRE].ADSGoogle Scholar
  123. [123]
    R. Harlander, L. Mihaila and M. Steinhauser, Running of α s and m b in the MSSM, Phys. Rev. D 76 (2007) 055002 [arXiv:0706.2953] [INSPIRE].ADSGoogle Scholar
  124. [124]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSGoogle Scholar
  125. [125]
    M.S. Carena, J.R. Ellis, S. Mrenna, A. Pilaftsis and C. Wagner, Collider probes of the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 659 (2003) 145 [hep-ph/0211467] [INSPIRE].ADSGoogle Scholar
  126. [126]
    J. Guasch, P. Hafliger and M. Spira, MSSM Higgs decays to bottom quark pairs revisited, Phys. Rev. D 68 (2003) 115001 [hep-ph/0305101] [INSPIRE].ADSGoogle Scholar
  127. [127]
    D. Noth and M. Spira, Higgs Boson Couplings to Bottom Quarks: Two-Loop Supersymmetry-QCD Corrections, Phys. Rev. Lett. 101 (2008) 181801 [arXiv:0808.0087] [INSPIRE].ADSGoogle Scholar
  128. [128]
    D. Noth and M. Spira, Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order, JHEP 06 (2011) 084 [arXiv:1001.1935] [INSPIRE].ADSGoogle Scholar
  129. [129]
    L. Mihaila and C. Reisser, \( O\left( {\alpha_s^2} \right) \) corrections to fermionic Higgs decays in the MSSM, JHEP 08 (2010) 021 [arXiv:1007.0693] [INSPIRE].ADSGoogle Scholar
  130. [130]
    A. Dabelstein, Fermionic decays of neutral MSSM Higgs bosons at the one loop level, Nucl. Phys. B 456 (1995) 25 [hep-ph/9503443] [INSPIRE].ADSGoogle Scholar
  131. [131]
    M. Frank et al., The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].ADSGoogle Scholar
  132. [132]
    K. Williams and G. Weiglein, Precise predictions for h ah b h c decays in the complex MSSM, Phys. Lett. B 660 (2008) 217 [arXiv:0710.5320] [INSPIRE].ADSGoogle Scholar
  133. [133]
    N. Baro, F. Boudjema and A. Semenov, Automatised full one-loop renormalisation of the MSSM. I. The Higgs sector, the issue of tan(β) and gauge invariance, Phys. Rev. D 78 (2008) 115003 [arXiv:0807.4668] [INSPIRE].ADSGoogle Scholar
  134. [134]
    K.E. Williams, H. Rzehak and G. Weiglein, Higher order corrections to Higgs boson decays in the MSSM with complex parameters, Eur. Phys. J. C 71 (2011) 1669 [arXiv:1103.1335] [INSPIRE].ADSGoogle Scholar
  135. [135]
    F. Staub, Sarah, arXiv:0806.0538 [INSPIRE].
  136. [136]
    F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].ADSMATHGoogle Scholar
  137. [137]
    F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].ADSMATHGoogle Scholar
  138. [138]
    J. Kublbeck, M. Böhm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].ADSGoogle Scholar
  139. [139]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSMATHGoogle Scholar
  140. [140]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSGoogle Scholar
  141. [141]
    T. Hahn, A Mathematica interface for FormCalc-generated code, Comput. Phys. Commun. 178 (2008) 217 [hep-ph/0611273] [INSPIRE].ADSGoogle Scholar
  142. [142]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  143. [143]
    F. Jegerlehner, Electroweak effective couplings for future precision experiments, Nuovo Cim. C 034S1 (2011) 31 [arXiv:1107.4683] [INSPIRE].Google Scholar
  144. [144]
    ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb −1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047 (2013).
  145. [145]
    CMS collaboration, Inclusive search for supersymmetry using the razor variables in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 111 (2013) 081802 [arXiv:1212.6961] [INSPIRE].ADSGoogle Scholar
  146. [146]
    ATLAS collaboration, Search for direct production of the top squark in the all-hadronic ttbar + etmiss final state in 21 fb −1 of p-pcollisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).
  147. [147]
    ATLAS collaboration, Search for direct stop pair production in events with a Z boson, b-jets and missing transverse energy with the ATLAS detector using 21 fb −1 from proton-proton collision at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-025 (2013).
  148. [148]
    ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in sqrts = 8,TeV pp collisions using 21 fb −1 of ATLAS data, ATLAS-CONF-2013-037 (2013).
  149. [149]
    ATLAS collaboration, Search for direct top squark pair production in final states with two leptons in \( \sqrt{s} \) = 8 TeV pp collisions using 20 fb −1 of ATLAS data, ATLAS-CONF-2013-048 (2013).
  150. [150]
    ATLAS collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2013-053 (2013).
  151. [151]
    ATLAS collaboration, Search for light scalar top quark pair production in final states with two leptons with the ATLAS detector in \( \sqrt{s} \) = 7 TeV proton-proton collisions, Eur. Phys. J. C 72 (2012) 2237 [arXiv:1208.4305] [INSPIRE].ADSGoogle Scholar
  152. [152]
    ATLAS collaboration, Search for light top squark pair production in final states with leptons and b jets with the ATLAS detector in \( \sqrt{s} \) = 7 TeV proton-proton collisions, Phys. Lett. B 720 (2013) 13 [arXiv:1209.2102] [INSPIRE].ADSGoogle Scholar
  153. [153]
    CMS collaboration, Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV, CMS-PAS-SUS-13-011 (2013).
  154. [154]
    CMS collaboration, S. Chatrchyan et al., Inclusive search for supersymmetry using the razor variables in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. Lett. 111 (2013) 081802 [arXiv:1212.6961] [INSPIRE].ADSGoogle Scholar
  155. [155]
    CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, or at least 3 b-quark jets in 7 TeV pp collisions using the variable alphaT, JHEP 01 (2013) 077 [arXiv:1210.8115] [INSPIRE].ADSGoogle Scholar
  156. [156]
    CMS collaboration, Scalar Top Quark Search with Jets and Missing Momentum in pp Collisions at \( \sqrt{s} \) = 7 TeV, CMS-PAS-SUS-11-030 (2011).
  157. [157]
    S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].ADSGoogle Scholar
  158. [158]
    S. King, M. Mühlleitner, R. Nevzorov and K. Walz, Natural NMSSM Higgs Bosons, Nucl. Phys. B 870 (2013) 323 [arXiv:1211.5074] [INSPIRE].ADSGoogle Scholar
  159. [159]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τν in top quark pair events using pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].ADSGoogle Scholar
  160. [160]
    ATLAS collaboration, Search for charged Higgs bosons decaying via H +τν in ttbar events using 4.6 fb 1 of pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2012-011 (2012).
  161. [161]
    ATLAS collaboration, A Search for a light charged Higgs boson decaying to cs in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2011-094 (2011).
  162. [162]
    CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].ADSGoogle Scholar
  163. [163]
    ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).
  164. [164]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
  165. [165]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSMATHGoogle Scholar
  166. [166]
    A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  167. [167]
    U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].ADSGoogle Scholar
  168. [168]
    U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].ADSMATHGoogle Scholar
  169. [169]
    U. Ellwanger and C. Hugonie, NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions, Comput. Phys. Commun. 177 (2007) 399 [hep-ph/0612134] [INSPIRE].ADSGoogle Scholar
  170. [170]
  171. [171]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSGoogle Scholar
  172. [172]
    M. Muhlleitner, SDECAY: A Fortran code for SUSY particle decays in the MSSM, Acta Phys. Polon. B 35 (2004) 2753 [hep-ph/0409200] [INSPIRE].ADSGoogle Scholar
  173. [173]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSMATHGoogle Scholar
  174. [174]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSGoogle Scholar
  175. [175]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
  176. [176]
    ATLAS collaboration, Observation and study of the Higgs boson candidate in the two photon decay channel with the ATLAS detector at the LHC, ATLAS-CONF-2012-168 (2012).
  177. [177]
    CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, CMS-PAS-HIG-13-001 (2013).
  178. [178]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
  179. [179]
    CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s =7 and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  180. [180]
    ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (*)ℓνℓν decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).
  181. [181]
    S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].ADSGoogle Scholar
  182. [182]
    W. Hollik and S. Penaranda, Yukawa coupling quantum corrections to the selfcouplings of the lightest MSSM Higgs boson, Eur. Phys. J. C 23 (2002) 163 [hep-ph/0108245] [INSPIRE].ADSGoogle Scholar
  183. [183]
    A. Dobado, M.J. Herrero, W. Hollik and S. Penaranda, Selfinteractions of the lightest MSSM Higgs boson in the large pseudoscalar mass limit, Phys. Rev. D 66 (2002) 095016 [hep-ph/0208014] [INSPIRE].ADSGoogle Scholar
  184. [184]
    E.N. Glover and J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].ADSGoogle Scholar
  185. [185]
    T. Plehn, M. Spira and P. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  186. [186]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].ADSGoogle Scholar
  187. [187]
    D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys. Lett. B 724 (2013) 306 [arXiv:1305.5206] [INSPIRE].ADSGoogle Scholar
  188. [188]
    J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].ADSMathSciNetGoogle Scholar
  189. [189]
    W.-Y. Keung, Double Higgs From WW Fusion, Mod. Phys. Lett. A 2 (1987) 765 [INSPIRE].ADSGoogle Scholar
  190. [190]
    D.A. Dicus, K.J. Kallianpur and S.S. Willenbrock, Higgs Boson Pair Production in the Effective W Approximation, Phys. Lett. B 200 (1988) 187 [INSPIRE].ADSGoogle Scholar
  191. [191]
    K.J. Kallianpur, Pair Production of Higgs Bosons via Heavy Quark Annihilation, Phys. Lett. B 215 (1988) 392 [INSPIRE].ADSGoogle Scholar
  192. [192]
    A. Abbasabadi, W. Repko, D.A. Dicus and R. Vega, Comparison of Exact and Effective Gauge Boson Calculations for Gauge Boson Fusion Processes, Phys. Rev. D 38 (1988) 2770 [INSPIRE].ADSGoogle Scholar
  193. [193]
    A. Abbasabadi, W. Repko, D.A. Dicus and R. Vega, Single and Double Higgs Production by Gauge Boson Fusion, Phys. Lett. B 213 (1988) 386 [INSPIRE].ADSGoogle Scholar
  194. [194]
    A. Dobrovolskaya and V. Novikov, On heavy Higgs boson production, Z. Phys. C 52 (1991) 427 [INSPIRE].ADSGoogle Scholar
  195. [195]
    V.D. Barger, T. Han and R. Phillips, Double Higgs Boson Bremsstrahlung From W and Z Bosons at Supercolliders, Phys. Rev. D 38 (1988) 2766 [INSPIRE].ADSGoogle Scholar
  196. [196]
    M. Moretti, S. Moretti, F. Piccinini, R. Pittau and A. Polosa, Higgs boson self-couplings at the LHC as a probe of extended Higgs sectors, JHEP 02 (2005) 024 [hep-ph/0410334] [INSPIRE].ADSGoogle Scholar
  197. [197]
    J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair Production of a 125 GeV Higgs Boson in MSSM and NMSSM at the LHC, JHEP 04 (2013) 134 [arXiv:1301.6437] [INSPIRE].ADSGoogle Scholar
  198. [198]
    M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP 10 (2012) 004 [arXiv:1206.7120] [INSPIRE].ADSGoogle Scholar
  199. [199]
    S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev. D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE].ADSGoogle Scholar
  200. [200]
  201. [201]
    M. Spira, HIGLU: A program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].
  202. [202]
    D. Graudenz, M. Spira and P. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [INSPIRE].ADSGoogle Scholar
  203. [203]
    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, SUSY Higgs production at proton colliders, Phys. Lett. B 318 (1993) 347 [INSPIRE].ADSGoogle Scholar
  204. [204]
    M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSGoogle Scholar
  205. [205]
    S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The Role of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [INSPIRE].ADSGoogle Scholar
  206. [206]
    M. Muhlleitner and M. Spira, Higgs Boson Production via Gluon Fusion: Squark Loops at NLO QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [INSPIRE].ADSGoogle Scholar
  207. [207]
    LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].
  208. [208]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Dao Thi Nhung
    • 1
  • Margarete Mühlleitner
    • 1
  • Juraj Streicher
    • 1
  • Kathrin Walz
    • 1
  1. 1.Institut für Theoretische Physik, Karlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations