Journal of High Energy Physics

, 2013:178 | Cite as

Parity odd equilibrium partition function in 2 + 1 dimensions

  • Juan L. Mañes
  • Manuel Valle


We use Schwinger’s proper time method to compute the parity odd contributions to the U(1) current and energy-momentum tensor of an ideal gas of fermions in 2 + 1 dimensions in the presence of static gauge and gravitational backgrounds. From these results the equilibrium partition function at first order in the derivative expansion is explicitly obtained by integration. The form of the computed partition function is consistent with general arguments based on Kaluza-Klein and gauge invariance.


Field Theories in Lower Dimensions Thermal Field Theory Anomalies in Field and String Theories 


  1. [1]
    D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative Superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational Anomaly and Transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A theory of first order dissipative superfluid dynamics, arXiv:1105.3733 [INSPIRE].
  6. [6]
    R. Loganayagam, Anomaly Induced Transport in Arbitrary Dimensions, arXiv:1106.0277 [INSPIRE].
  7. [7]
    K. Jensen et al., Parity-Violating Hydrodynamics in 2 + 1 Dimensions, JHEP 05 (2012) 102 [arXiv:1112.4498] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    R. Loganayagam and P. Surowka, Anomaly/Transport in an Ideal Weyl gas, JHEP 04 (2012) 097 [arXiv:1201.2812] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Jain and T. Sharma, Anomalous charged fluids in 1 + 1d from equilibrium partition function, JHEP 01 (2013) 039 [arXiv:1203.5308] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Valle, Hydrodynamics in 1 + 1 dimensions with gravitational anomalies, JHEP 08 (2012) 113 [arXiv:1206.1538] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. Dubovsky, L. Hui and A. Nicolis, Effective field theory for hydrodynamics: Wess-Zumino term and anomalies in two spacetime dimensions, arXiv:1107.0732 [INSPIRE].
  13. [13]
    S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Banerjee et al., Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Niemi and G. Semenoff, Axial Anomaly Induced Fermion Fractionization and Effective Gauge Theory Actions in Odd Dimensional Space-Times, Phys. Rev. Lett. 51 (1983) 2077 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    A. Redlich, Gauge Noninvariance and Parity Violation of Three-Dimensional Fermions, Phys. Rev. Lett. 52 (1984) 18 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Redlich, Parity Violation and Gauge Noninvariance of the Effective Gauge Field Action in Three-Dimensions, Phys. Rev. D 29 (1984) 2366 [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and Odd Dimensions, Annals Phys. 163 (1985) 288 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    N. Birrell and P. Davies, Quantum Fields in Curved Space, Cambridge University Press, (1982).Google Scholar
  22. [22]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, (2012).Google Scholar
  23. [23]
    M. Le Bellac, Thermal Field Theory, Cambridge Monographs of Mathematical Physics, Cambridge University Press, (2000).Google Scholar
  24. [24]
    X. Huang and L. Parker, Hermiticity of the Dirac Hamiltonian in Curved Spacetime, Phys. Rev. D 79 (2009) 024020 [arXiv:0811.2296] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    A. Nicolis and D.T. Son, Hall viscosity from effective field theory, arXiv:1103.2137 [INSPIRE].
  26. [26]
    T.L. Hughes, R.G. Leigh and E. Fradkin, Torsional Response and Dissipationless Viscosity in Topological Insulators, Phys. Rev. Lett. 107 (2011) 075502 [arXiv:1101.3541] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T.L. Hughes, R.G. Leigh and O. Parrikar, Torsional Anomalies, Hall Viscosity and Bulk-boundary Correspondence in Topological States, Phys. Rev. D 88 (2013) 025040 [arXiv:1211.6442] [INSPIRE].ADSGoogle Scholar
  28. [28]
    F.M. Haehl and M. Rangamani, Comments on Hall transport from effective actions, JHEP 10 (2013) 074 [arXiv:1305.6968] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    F. Hehl, P. Von Der Heyde, G. Kerlick and J. Nester, General Relativity with Spin and Torsion: Foundations and Prospects, Rev. Mod. Phys. 48 (1976) 393 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Departamento de Física de la Materia CondensadaUniversidad del País Vasco UPV/EHUBilbaoSpain
  2. 2.Departamento de Física TeóricaUniversidad del País Vasco UPV/EHUBilbaoSpain

Personalised recommendations