Journal of High Energy Physics

, 2013:103 | Cite as

Localization on round sphere revisited



We consider supersymmetric gauge theories on round 3-sphere with a certain background gauge field. The Lagrangians break the usual symmetry because the background gauge field which we have turned on violates the isometry. In order to maintain the supersymmetry, we choose unfamiliar charged Killing spinors as \( \mathcal{N} \) = 2 SUSY parameters. We perform localization calculous within this setup and find the double sine function as we expected. We comment on more direct relationship between theories on round sphere and squashed sphere via Weyl transformation.


Extended Supersymmetry Chern-Simons Theories Integrable Field Theories AdS-CFT Correspondence 


  1. [1]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    F. Benini and S. Cremonesi, Partition functions of N = (2,2) gauge theories on S 2 and vortices, arXiv:1206.2356 [INSPIRE].
  6. [6]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, JHEP 05 (2013) 093 [arXiv:1206.2606] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Y. Imamura and D. Yokoyama, N = 2 supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Gang, Chern-Simons theory on L(p,q) lens spaces and localization, arXiv:0912.4664 [INSPIRE].
  10. [10]
    J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008 [arXiv:1104.5353] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Ohta and Y. Yoshida, Non-Abelian localization for supersymmetric Yang-Mills-Chern-Simons theories on seifert manifold, Phys. Rev. D 86 (2012) 105018 [arXiv:1205.0046] [INSPIRE].ADSGoogle Scholar
  12. [12]
    L.F. Alday, D. Martelli, P. Richmond and J. Sparks, Localization on Three-Manifolds, arXiv:1307.6848 [INSPIRE].
  13. [13]
    J. Nian, Localization of Supersymmetric Chern-Simons-Matter Theory on a Squashed S 3 with SU(2) × U(1) Isometry, arXiv:1309.3266 [INSPIRE].
  14. [14]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  16. [16]
    H. Fuji, S. Hirano and S. Moriyama, Summing up all genus free energy of ABJM matrix model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    A. Klemm, M. Mariño, M. Schiereck and M. Soroush, ABJM Wilson loops in the Fermi gas approach, arXiv:1207.0611 [INSPIRE].
  19. [19]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  20. [20]
    D.L. Jafferis and A. Tomasiello, A simple class of N = 3 gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].ADSGoogle Scholar
  22. [22]
    R.C. Santamaria, M. Mariño and P. Putrov, Unquenched flavor and tropical geometry in strongly coupled Chern-Simons-matter theories, JHEP 10 (2011) 139 [arXiv:1011.6281] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, Phys. Rev. D 84 (2011) 046008 [arXiv:1102.5289] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Mariño and P. Putrov, Interacting fermions and N = 2 Chern-Simons-matter theories, arXiv:1206.6346 [INSPIRE].
  25. [25]
    D. Farquet and J. Sparks, Wilson loops and the geometry of matrix models in AdS 4 /CFT 3, arXiv:1304.0784 [INSPIRE].
  26. [26]
    S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D. Martelli, A. Passias and J. Sparks, The gravity dual of supersymmetric gauge theories on a squashed three-sphere, Nucl. Phys. B 864 (2012) 840 [arXiv:1110.6400] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Tanaka, Comments on knotted 1/2 BPS Wilson loops, JHEP 07 (2012) 097 [arXiv:1204.5975] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    K. Nagasaki and S. Yamaguchi, Towards the localization of SUSY gauge theory on a curved space, Int. J. Mod. Phys. A 27 (2012) 1250029 [arXiv:1106.4975] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3d supersymmetric theories, arXiv:1211.3409 [INSPIRE].
  31. [31]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    M. Honda and Y. Yoshida, Localization and Large-N reduction on S 3 for the Planar and M-theory limit, Nucl. Phys. B 865 (2012) 21 [arXiv:1203.1016] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    Y. Asano, G. Ishiki, T. Okada and S. Shimasaki, Large-N reduction for N = 2 quiver Chern-Simons theories on S 3 and localization in matrix models, Phys. Rev. D 85 (2012) 106003 [arXiv:1203.0559] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of Supersymmetric Partition Functions, arXiv:1309.5876 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Physics, Graduate School of ScienceOsaka UniversityToyonakaJapan

Personalised recommendations