Journal of High Energy Physics

, 2013:86 | Cite as

Spacetime emergence via holographic RG flow from incompressible Navier-Stokes at the horizon

Open Access


We show that holographic RG flow can be defined precisely such that it corresponds to emergence of spacetime. We consider the case of pure Einstein’s gravity with a negative cosmological constant in the dual hydrodynamic regime. The holographic RG flow is a system of first order differential equations for radial evolution of the energy-momentum tensor and the variables which parametrize it’s phenomenological form on hypersurfaces in a foliation. The RG flow can be constructed without explicit knowledge of the bulk metric provided the hypersurface foliation is of a special kind. The bulk metric can be reconstructed once the RG flow equations are solved. We show that the full spacetime can be determined from the RG flow by requiring that the horizon fluid is a fixed point in a certain scaling limit leading to the non-relativistic incompressible Navier-Stokes dynamics. This restricts the near-horizon forms of all transport coefficients, which are thus determined independently of their asymptotic values and the RG flow can be solved uniquely. We are therefore able to recover the known boundary values of almost all transport coefficients at the first and second orders in the derivative expansion. We conjecture that the complete characterisation of the general holographic RG flow, including the choice of counterterms, might be determined from the hydrodynamic regime.


Gauge-gravity correspondence Spacetime Singularities Renormalization Group 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  2. [2]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    M. Henningson and K. Skenderis, Holography and the Weyl anomaly, Fortsch. Phys. 48 (2000) 125 [hep-th/9812032] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  7. [7]
    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  9. [9]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  11. [11]
    I. Heemskerk and J. Polchinski, Holographic and wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [INSPIRE].ADSGoogle Scholar
  14. [14]
    K. Sen, A. Sinha and N.V. Suryanarayana, Counterterms, critical gravity and holography, Phys. Rev. D 85 (2012) 124017 [arXiv:1201.1288] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.-S. Lee, Background independent holographic description: from matrix field theory to quantum gravity, JHEP 10 (2012) 160 [arXiv:1204.1780] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.-H. Oh and D.P. Jatkar, Stochastic quantization and holographic Wilsonian renormalization group, JHEP 11 (2012) 144 [arXiv:1209.2242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
  18. [18]
    V. Balasubramanian, M. Guica and A. Lawrence, Holographic interpretations of the renormalization group, JHEP 01 (2013) 115 [arXiv:1211.1729] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    L.A. Pando Zayas and C. Peng, Toward a higher-spin dual of interacting field theories, JHEP 10 (2013) 023 [arXiv:1303.6641] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    Y. Nakayama, Holographic interpretation of renormalization group approach to singular perturbations in non-linear differential equations, arXiv:1305.4117 [INSPIRE].
  21. [21]
    I. Sachs, Higher spin vs. renormalization group equations, arXiv:1306.6654 [INSPIRE].
  22. [22]
    E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. 2. Sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    R.A. Janik, Viscous plasma evolution from gravity using AdS/CFT, Phys. Rev. Lett. 98 (2007) 022302 [hep-th/0610144] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [Erratum ibid. D 78 (2008) 089902] [arXiv:0712.2916] [INSPIRE].
  30. [30]
    T. Damour, Quelques propriétés mécaniques, électromagnétiques, thermodynamiques et quantiques des trous noirs, Thése de Doctorat d’Etat, Université Pierre et Marie Curie, Paris VI, France (1979), unpublished.Google Scholar
  31. [31]
    T. Damour, Surface effects in black hole physics, in the proceedings of the Second Marcel Grossmann Meeting on general Relativity, R. Ruffini ed., North-Holland, The Netherlands (1982).Google Scholar
  32. [32]
    T. Damour, Black hole Eddy currents, Phys. Rev. D 18 (1978) 3598 [INSPIRE].ADSGoogle Scholar
  33. [33]
    R. Blandford and R. Znajek, Electromagnetic extractions of energy from Kerr black holes, Mon. Not. Roy. Astron. Soc. 179 (1977) 433 [INSPIRE].ADSGoogle Scholar
  34. [34]
    R. Price and K. Thorne, Membrane viewpoint on black holes: properties and evolution of the stretched horizon, Phys. Rev. D 33 (1986) 915 [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    K.S. Thorne, R. Price and D. Macdonald, Black holes: the membrane paradigm, The Silliman Memorial Lectures Series, Yale University Press, U.S.A. (1986).Google Scholar
  36. [36]
    T. Damour and M. Lilley, String theory, gravity and experiment, arXiv:0802.4169 [INSPIRE].
  37. [37]
    G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99 (2007), no. 22 220405 [cond-mat/0512165] [INSPIRE].
  38. [38]
    G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101 (2008), no. 11 110501 [quant-ph/0610099].
  39. [39]
    L.Y. Chen, N. Goldenfeld and Y. Oono, Renormalization group theory for global asymptotic analysis, Phys. Rev. Lett. 73 (1994) 1311 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    L.-Y. Chen, N. Goldenfeld and Y. Oono, The renormalization group and singular perturbations: multiple scales, boundary layers and reductive perturbation theory, Phys. Rev. E 54 (1996) 376 [hep-th/9506161] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G. Barenblatt, Scaling, self-similarity and intermediate asymptotics, Cambridge University Press, Cambridge U.K. (1996).MATHGoogle Scholar
  42. [42]
    J. Veysey, II and N. Goldenfeld, Simple viscous flows: from boundary layers to the renormalization group, Rev. Mod. Phys. 79 (2007) 883 [physics/0609138].MathSciNetADSCrossRefMATHGoogle Scholar
  43. [43]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, Wilsonian approach to fluid/gravity duality, JHEP 03 (2011) 141 [arXiv:1006.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    I. Bredberg, C. Keeler, V. Lysov and A. Strominger, From Navier-Stokes to Einstein, JHEP 07 (2012) 146 [arXiv:1101.2451] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    V. Lysov and A. Strominger, From Petrov-Einstein to Navier-Stokes, arXiv:1104.5502 [INSPIRE].
  46. [46]
    G. Compere, P. McFadden, K. Skenderis and M. Taylor, The holographic fluid dual to vacuum Einstein gravity, JHEP 07 (2011) 050 [arXiv:1103.3022] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    R.-G. Cai, L. Li and Y.-L. Zhang, Non-relativistic fluid dual to asymptotically AdS gravity at finite cutoff surface, JHEP 07 (2011) 027 [arXiv:1104.3281] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Kuperstein and A. Mukhopadhyay, The unconditional RG flow of the relativistic holographic fluid, JHEP 11 (2011) 130 [arXiv:1105.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Brattan, J. Camps, R. Loganayagam and M. Rangamani, CFT dual of the AdS Dirichlet problem: fluid/gravity on cut-off surfaces, JHEP 12 (2011) 090 [arXiv:1106.2577] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    C. Eling and Y. Oz, Holographic screens and transport coefficients in the fluid/gravity correspondence, Phys. Rev. Lett. 107 (2011) 201602 [arXiv:1107.2134] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M.M. Caldarelli, J. Camps, B. Gouteraux and K. Skenderis, AdS/Ricci-flat correspondence and the Gregory-Laflamme instability, Phys. Rev. D 87 (2013) 061502 [arXiv:1211.2815] [INSPIRE].ADSGoogle Scholar
  52. [52]
    N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].ADSGoogle Scholar
  53. [53]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    J. Armas, J. Camps, T. Harmark and N.A. Obers, The Young modulus of black strings and the fine structure of blackfolds, JHEP 02 (2012) 110 [arXiv:1110.4835] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    R. Emparan, V.E. Hubeny and M. Rangamani, Effective hydrodynamics of black D3-branes, JHEP 06 (2013) 035 [arXiv:1303.3563] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    P. Romatschke, Relativistic viscous fluid dynamics and non-equilibrium entropy, Class. Quant. Grav. 27 (2010) 025006 [arXiv:0906.4787] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla and A. Sharma, Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions, JHEP 12 (2008) 116 [arXiv:0809.4272] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    R.K. Gupta and A. Mukhopadhyay, On the universal hydrodynamics of strongly coupled CFTs with gravity duals, JHEP 03 (2009) 067 [arXiv:0810.4851] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    I. Fouxon and Y. Oz, Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    S. Bhattacharyya, S. Lahiri, R. Loganayagam and S. Minwalla, Large rotating AdS black holes from fluid mechanics, JHEP 09 (2008) 054 [arXiv:0708.1770] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    M.M. Caldarelli et al., Vorticity in holographic fluids, PoS(CORFU2011)076 [arXiv:1206.4351] [INSPIRE].
  65. [65]
    N. Banerjee et al., Hydrodynamics from charged black branes, JHEP 01 (2011) 094 [arXiv:0809.2596] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Bhattacharya, S. Bhattacharyya and S. Minwalla, Dissipative superfluid dynamics from gravity, JHEP 04 (2011) 125 [arXiv:1101.3332] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Policastro, Supersymmetric hydrodynamics from the AdS/CFT correspondence, JHEP 02 (2009) 034 [arXiv:0812.0992] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    C. Hoyos, B. Keren-Zur and Y. Oz, Supersymmetric sound in fluids, JHEP 11 (2012) 152 [arXiv:1206.2958] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    J. Erdmenger and S. Steinfurt, A universal fermionic analogue of the shear viscosity, JHEP 07 (2013) 018 [arXiv:1302.1869] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    R. Iyer and A. Mukhopadhyay, An AdS/CFT connection between Boltzmann and Einstein, Phys. Rev. D 81 (2010) 086005 [arXiv:0907.1156] [INSPIRE].MathSciNetADSGoogle Scholar
  71. [71]
    R. Iyer and A. Mukhopadhyay, Homogeneous relaxation at strong coupling from gravity, Phys. Rev. D 84 (2011) 126013 [arXiv:1103.1814] [INSPIRE].ADSGoogle Scholar
  72. [72]
    A. Mukhopadhyay and R. Iyer, Phenomenology of irreversible processes from gravity, PoS(EPS-HEP2011)123 [arXiv:1111.4185] [INSPIRE].
  73. [73]
    A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    A. Mukhopadhyay, A covariant form of the Navier-Stokes equation for the galilean conformal algebra, JHEP 01 (2010) 100 [arXiv:0908.0797] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Berkeley and D.S. Berman, The Navier-Stokes equation and solution generating symmetries from holography, JHEP 04 (2013) 092 [arXiv:1211.1983] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    S. Banerjee, R. Iyer and A. Mukhopadhyay, The holographic spectral function in non-equilibrium states, Phys. Rev. D 85 (2012) 106009 [arXiv:1202.1521] [INSPIRE].ADSGoogle Scholar
  77. [77]
    A. Mukhopadhyay, Nonequilibrium fluctuation-dissipation relation from holography, Phys. Rev. D 87 (2013) 066004 [arXiv:1206.3311] [INSPIRE].ADSGoogle Scholar
  78. [78]
    C. Eling, I. Fouxon and Y. Oz, Gravity and a geometrization of turbulence: an intriguing correspondence, arXiv:1004.2632 [INSPIRE].

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Institut de Physique Théorique, CEA Saclay, CNRS URA 2306Gif-sur-YvetteFrance
  2. 2.Centre de Physique Théorique, École Polytechnique, CNRSPalaiseauFrance

Personalised recommendations