Journal of High Energy Physics

, 2013:79 | Cite as

Holographic vorticity in the fluid/gravity correspondence

  • Christopher Eling
  • Yaron Oz


The vorticity statistics characterizes both the direct and the inverse turbulent cascades of two-dimensional fluid flows. The fluid/gravity correspondence relates fluid flows to black brane dynamics. We construct the holographic vorticity for relativistic and non-relativistic fluids in terms of the gravitational black brane data, and relate it to the horizon vorticity expressed as a Weyl scalar. We discuss the statistical scaling structure of the horizon geometry.


Black Holes Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    P. Tabeling, Two-dimensional turbulence: a physicist approach, Phys. Rept. 362 (2002) 1.MathSciNetADSCrossRefMATHGoogle Scholar
  2. [2]
    C. Eling, Y. Neiman and Y. Oz, Holographic Non-Abelian Charged Hydrodynamics from the Dynamics of Null Horizons, JHEP 12 (2010) 086 [arXiv:1010.1290] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    C. Eling and Y. Oz, Relativistic CFT Hydrodynamics from the Membrane Paradigm, JHEP 02 (2010) 069 [arXiv:0906.4999] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    C. Eling, I. Fouxon and Y. Oz, The Incompressible Navier-Stokes Equations From Membrane Dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    E. Gourgoulhon and J.L. Jaramillo, A 3 + 1 perspective on null hypersurfaces and isolated horizons, Phys. Rept. 423 (2006) 159 [gr-qc/0503113] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Carrasco, L. Lehner, R.C. Myers, O. Reula and A. Singh, Turbulent flows for relativistic conformal fluids in 2 + 1 dimensions, Phys. Rev. D 86 (2012) 126006 [arXiv:1210.6702] [INSPIRE].ADSGoogle Scholar
  8. [8]
    I. Fouxon and Y. Oz, Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations, Phys. Rev. Lett. 101 (2008) 261602 [arXiv:0809.4512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The Incompressible Non-Relativistic Navier-Stokes Equation from Gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: Diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Ashtekar, S. Fairhurst and B. Krishnan, Isolated horizons: Hamiltonian evolution and the first law, Phys. Rev. D 62 (2000) 104025 [gr-qc/0005083] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    A. Ashtekar, J. Engle, T. Pawlowski and C. Van Den Broeck, Multipole moments of isolated horizons, Class. Quant. Grav. 21 (2004) 2549 [gr-qc/0401114] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    D. Bernard, G. Boffetta, A. Celani and G. Falkovich, Conformal invariance in two-dimensional turbulence, Nature Physics 2 (2006) 124 [nlin/0602017].ADSCrossRefGoogle Scholar
  14. [14]
    A. Adams, P.M. Chesler and H. Liu, Holographic turbulence, arXiv:1307.7267 [INSPIRE].
  15. [15]
    R. Owen et al., Frame-Dragging Vortexes and Tidal Tendexes Attached to Colliding Black Holes: Visualizing the Curvature of Spacetime, Phys. Rev. Lett. 106 (2011) 151101 [arXiv:1012.4869] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Max Planck Institute for Gravitational Physics, Albert Einstein InstitutePotsdamGermany
  2. 2.Raymond and Beverly Sackler School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations