Advertisement

Journal of High Energy Physics

, 2013:64 | Cite as

Emergent Lorentz invariance from strong dynamics: holographic examples

  • Grigory Bednik
  • Oriol Pujolàs
  • Sergey Sibiryakov
Article

Abstract

We explore the phenomenon of emergent Lorentz invariance in strongly coupled theories. The strong dynamics is handled using the gauge/gravity correspondence. We analyze how the renormalization group flow towards Lorentz invariance is reflected in the two-point functions of local operators and in the dispersion relations of the bound states. The deviations of these observables from the relativistic form at low energies are found to be power-law suppressed by the ratio of the infrared and ultraviolet scales. We show that in a certain subclass of models the velocities of the light bound states stay close to the emergent ‘speed of light’ even at high energies. We comment on the implications of our results for particle physics and condensed matter.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Space-Time Symmetries Renormalization Group 

References

  1. [1]
    V.A. Kostelecky and N. Russell, Data tables for Lorentz and CPT violation, Rev. Mod. Phys. 83 (2011) 11 [arXiv:0801.0287] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D. Blas, O. Pujolàs and S. Sibiryakov, Consistent extension of Hořava gravity, Phys. Rev. Lett. 104 (2010) 181302 [arXiv:0909.3525] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    S. Chadha and H.B. Nielsen, Lorentz invariance as a low-energy phenomenon, Nucl. Phys. B 217 (1983) 125 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    H.B. Nielsen and M. Ninomiya, β-function in a noncovariant Yang-Mills theory, Nucl. Phys. B 141 (1978) 153 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    R. Iengo, J.G. Russo and M. Serone, Renormalization group in Lifshitz-type theories, JHEP 11 (2009) 020 [arXiv:0906.3477] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    G.F. Giudice, M. Raidal and A. Strumia, Lorentz violation from the Higgs portal, Phys. Lett. B 690 (2010) 272 [arXiv:1003.2364] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.M. Anber and J.F. Donoghue, The emergence of a universal limiting speed, Phys. Rev. D 83 (2011) 105027 [arXiv:1102.0789] [INSPIRE].ADSGoogle Scholar
  9. [9]
    O. Vafek, Z. Tesanovic and M. Franz, Relativity restored: Dirac anisotropy in QED 3, Phys. Rev. Lett. 89 (2002) 157003 [cond-mat/0203047] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    M. Franz, Z. Tesanovic and O. Vafek, QED 3 theory of pairing pseudogap in cuprates: from d-wave superconductor to antiferromagnet via algebraic Fermi liquid, Phys. Rev. B 66 (2002) 054535 [cond-mat/0203333] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    D.J. Lee and I.F. Herbut, The effect of velocity anisotropy on the antiferromagnetic instability of d wave superconductors, Phys. Rev. B 66 (2002) 094512 [cond-mat/0201088] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    I.F. Herbut, V. Juricic and B. Roy, Theory of interacting electrons on the honeycomb lattice, Phys. Rev. B 79 (2009) 085116 [arXiv:0811.0610] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Rattazzi, private communication.Google Scholar
  14. [14]
    R. Sundrum, From fixed points to the fifth dimension, Phys. Rev. D 86 (2012) 085025 [arXiv:1106.4501] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  17. [17]
    P.A. Bolokhov and M. Pospelov, Classification of dimension 5 Lorentz violating interactions in the standard model, Phys. Rev. D 77 (2008) 025022 [hep-ph/0703291] [INSPIRE].ADSGoogle Scholar
  18. [18]
    N.T. Evans, Discrete series for the universal covering group of the 3+2 de Sitter group, J. Math. Phys. 8 (1967) 170.CrossRefADSMATHGoogle Scholar
  19. [19]
    G. Mack, All unitary ray representations of the conformal group SU(2,2) with positive energy, Commun. Math. Phys. 55 (1977) 1 [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  20. [20]
    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [INSPIRE].Google Scholar
  21. [21]
    D. Colladay and V.A. Kostelecky, Lorentz violating extension of the standard model, Phys. Rev. D 58 (1998) 116002 [hep-ph/9809521] [INSPIRE].ADSGoogle Scholar
  22. [22]
    S.R. Coleman and S.L. Glashow, High-energy tests of Lorentz invariance, Phys. Rev. D 59 (1999) 116008 [hep-ph/9812418] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Groot Nibbelink and M. Pospelov, Lorentz violation in supersymmetric field theories, Phys. Rev. Lett. 94 (2005) 081601 [hep-ph/0404271] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    O. Pujolàs and S. Sibiryakov, Supersymmetric aether, JHEP 01 (2012) 062 [arXiv:1109.4495] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    D. Redigolo, On Lorentz-violating supersymmetric quantum field theories, Phys. Rev. D 85 (2012) 085009 [arXiv:1106.2035] [INSPIRE].ADSGoogle Scholar
  26. [26]
    B. Holdom, Raising the sideways scale, Phys. Rev. D 24 (1981) 1441 [INSPIRE].ADSGoogle Scholar
  27. [27]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  28. [28]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].MathSciNetCrossRefADSMATHGoogle Scholar
  29. [29]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  31. [31]
    H. Braviner, R. Gregory and S.F. Ross, Flows involving Lifshitz solutions, Class. Quant. Grav. 28 (2011) 225028 [arXiv:1108.3067] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    C. Keeler, Scalar boundary conditions in Lifshitz spacetimes, arXiv:1212.1728 [INSPIRE].
  35. [35]
    T. Andrade and S.F. Ross, Boundary conditions for scalars in Lifshitz, Class. Quant. Grav. 30 (2013) 065009 [arXiv:1212.2572] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    C. Keeler, G. Knodel and J.T. Liu, What do non-relativistic CFTs tell us about Lifshitz spacetimes?, arXiv:1308.5689 [INSPIRE].
  37. [37]
    S. Janiszewski and A. Karch, Non-relativistic holography from Hořava gravity, JHEP 02 (2013) 123 [arXiv:1211.0005] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    T. Griffin, P. Hořava and C.M. Melby-Thompson, Lifshitz gravity for Lifshitz holography, Phys. Rev. Lett. 110 (2013) 081602 [arXiv:1211.4872] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    S. Janiszewski and A. Karch, String theory embeddings of nonrelativistic field theories and their holographic Hořava gravity duals, Phys. Rev. Lett. 110 (2013) 081601 [arXiv:1211.0010] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    T. Griffin, P. Hořava and C.M. Melby-Thompson, Conformal Lifshitz gravity from holography, JHEP 05 (2012) 010 [arXiv:1112.5660] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    S.S. Gubser, Time warps, JHEP 01 (2010) 020 [arXiv:0812.5107] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    E. Kiritsis, Lorentz violation, gravity, dissipation and holography, JHEP 01 (2013) 030 [arXiv:1207.2325] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    B. Gouteraux and E. Kiritsis, Quantum critical lines in holographic phases with (un)broken symmetry, JHEP 04 (2013) 053 [arXiv:1212.2625] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  45. [45]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  46. [46]
    M.C.N. Cheng, S.A. Hartnoll and C.A. Keeler, Deformations of Lifshitz holography, JHEP 03 (2010) 062 [arXiv:0912.2784] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    K. Copsey and R. Mann, Pathologies in asymptotically Lifshitz spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  48. [48]
    G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  49. [49]
    S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635 [INSPIRE].
  50. [50]
    T. Jacobson and D. Mattingly, Gravity with a dynamical preferred frame, Phys. Rev. D 64 (2001) 024028 [gr-qc/0007031] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    D. Blas, O. Pujolàs and S. Sibiryakov, On the extra mode and inconsistency of Hořava gravity, JHEP 10 (2009) 029 [arXiv:0906.3046] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    E.M. Lifshitz, On the theory of second-order phase transitions I, Zh. Eksp. Teor. Fiz. 11 (1941) 255.Google Scholar
  53. [53]
    E.M. Lifshitz, On the theory of second-order phase transitions II, Zh. Eksp. Teor. Fiz. 11 (1941) 269.Google Scholar
  54. [54]
    D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  55. [55]
    M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari, Critical limit and anisotropy in the two point correlation function of three-dimensional O(N) models, Europhys. Lett. 38 (1997) 577 [cond-mat/9612164] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    M. Campostrini, A. Pelissetto, P. Rossi and E. Vicari, The two point correlation function of three-dimensional O(N) models: critical limit and anisotropy, Phys. Rev. E 57 (1998) 184 [cond-mat/9705086] [INSPIRE].ADSGoogle Scholar
  57. [57]
    Z. Davoudi and M.J. Savage, Restoration of rotational symmetry in the continuum limit of lattice field theories, Phys. Rev. D 86 (2012) 054505 [arXiv:1204.4146] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  59. [59]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  60. [60]
    A. Kehagias and K. Tamvakis, Localized gravitons, gauge bosons and chiral fermions in smooth spaces generated by a bounce, Phys. Lett. B 504 (2001) 38 [hep-th/0010112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    M. Pospelov and Y. Shang, On Lorentz violation in Hořava-Lifshitz type theories, Phys. Rev. D 85 (2012) 105001 [arXiv:1010.5249] [INSPIRE].ADSGoogle Scholar
  62. [62]
    D. Blas, O. Pujolàs and S. Sibiryakov, Comment onStrong coupling in extended Hořava-Lifshitz gravity’, Phys. Lett. B 688 (2010) 350 [arXiv:0912.0550] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D. Blas, O. Pujolàs and S. Sibiryakov, Models of non-relativistic quantum gravity: the good, the bad and the healthy, JHEP 04 (2011) 018 [arXiv:1007.3503] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 9 (2006) 3 [gr-qc/0510072] [INSPIRE].Google Scholar
  65. [65]
    S.L. Dubovsky, Tunneling into extra dimension and high-energy violation of Lorentz invariance, JHEP 01 (2002) 012 [hep-th/0103205] [INSPIRE].CrossRefADSGoogle Scholar
  66. [66]
    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, Dynamics of bubbles in general relativity, Phys. Rev. D 36 (1987) 2919 [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Grigory Bednik
    • 1
  • Oriol Pujolàs
    • 2
  • Sergey Sibiryakov
    • 3
    • 4
  1. 1.Department of Physics and AstronomyMcMaster UniversityHamiltonCanada
  2. 2.Departament de Física and IFAEUniversitat Autònoma de BarcelonaBarcelonaSpain
  3. 3.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  4. 4.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations