Advertisement

Journal of High Energy Physics

, 2013:57 | Cite as

A naturally light dilaton

  • Francesco Coradeschi
  • Paolo Lodone
  • Duccio Pappadopulo
  • Riccardo Rattazzi
  • Lorenzo Vitale
Article

Abstract

Goldstone’s theorem does not apply straightforwardly to the case of spontaneously broken scale invariance. We elucidate under what conditions a light scalar degree of freedom, identifiable with the dilaton, can naturally arise. Our construction can be considered an explicit dynamical solution to the cosmological constant problem in the scalar version of gravity.

Keywords

Spontaneous Symmetry Breaking Space-Time Symmetries Renormalization Group 

References

  1. [1]
    The main idea discussed in this paper was originally developed by R. Contino, A. Pomarol and R. Rattazzi in unpublished work, see R. Rattazzi, The naturally light dilaton, talk at Planck 2010, indico/contribId=163&confId=75810, CERN, Geneva Switzerland (2010).
  2. [2]
    See also talk by A. Pomarol, Elementary or composite: the particle physics dilemma, talk at Xmas10, http://www.ift.uam-csic.es/workshops/Xmas10/doc/pomarol.pdf, Madrid Spain December 15–17 2010.
  3. [3]
    A. Salam and J. Strathdee, Nonlinear realizations. 2. Conformal symmetry, Phys. Rev. 184 (1969) 1760 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    C. Isham, A. Salam and J. Strathdee, Spontaneous breakdown of conformal symmetry, Phys. Lett. B 31 (1970) 300 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    C. Isham, A. Salam and J. Strathdee, Nonlinear realizations of space-time symmetries. Scalar and tensor gravity, Annals Phys. 62 (1971) 98 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  6. [6]
    B. Zumino, Effective Lagrangians and broken symmetries, in Lectures on elementary particles and quantum field theory, volume 2, Brandeis Univ., MIT Press, U.S.A. (1970), pg. 437 [INSPIRE].
  7. [7]
    D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3 [INSPIRE].Google Scholar
  8. [8]
    W.A. Bardeen, M. Moshe and M. Bander, Spontaneous breaking of scale invariance and the ultraviolet fixed point in O(n) symmetric (ϕ 6 in three-dimensions) theory, Phys. Rev. Lett. 52 (1984) 1188 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A. Cappelli and A. Coste, On the stress tensor of conformal field theories in higher dimensions, Nucl. Phys. B 314 (1989) 707 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Tomboulis, Dynamically adjusted cosmological constant and conformal anomalies, Nucl. Phys. B 329 (1990) 410 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Schwimmer and S. Theisen, Spontaneous breaking of conformal invariance and trace anomaly matching, Nucl. Phys. B 847 (2011) 590 [arXiv:1011.0696] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    S. Fubini, A new approach to conformal invariant field theories, Nuovo Cim. A 34 (1976) 521 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Nicolis, R. Rattazzi and E. Trincherini, Energys and amplitudespositivity, JHEP 05 (2010) 095 [Erratum ibid. 11 (2011) 128] [arXiv:0912.4258] [INSPIRE].
  15. [15]
    R. Sundrum, Gravitys scalar cousin, hep-th/0312212 [INSPIRE].
  16. [16]
    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].Google Scholar
  17. [17]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
  19. [19]
    E. Witten, Comments on Sundrum & Giddings talkdiscussion, talk at ITP conferencenew dimensions in field theory and string theory, http://www.itp.ucsb.edu/online/susy_c99/discussion, Santa Barbara U.S.A. (1999).
  20. [20]
    S.S. Gubser, AdS/CFT and gravity, Phys. Rev. D 63 (2001) 084017 [hep-th/9912001] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    H.L. Verlinde, Holography and compactification, Nucl. Phys. B 580 (2000) 264 [hep-th/9906182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  23. [23]
    W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    W.D. Goldberger and M.B. Wise, Phenomenology of a stabilized modulus, Phys. Lett. B 475 (2000) 275 [hep-ph/9911457] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    O. DeWolfe, D. Freedman, S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    C. Csáki, M.L. Graesser and G.D. Kribs, Radion dynamics and electroweak physics, Phys. Rev. D 63 (2001) 065002 [hep-th/0008151] [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Rattazzi and A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model, JHEP 04 (2001) 021 [hep-th/0012248] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Lewandowski and R. Sundrum, RS1, higher derivatives and stability, Phys. Rev. D 65 (2002) 044003 [hep-th/0108025] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    L. Kofman, J. Martin and M. Peloso, Exact identification of the radion and its coupling to the observable sector, Phys. Rev. D 70 (2004) 085015 [hep-ph/0401189] [INSPIRE].ADSGoogle Scholar
  30. [30]
    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    B. Grinstein and P. Uttayarat, A very light dilaton, JHEP 07 (2011) 038 [arXiv:1105.2370] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    T. Konstandin, G. Nardini and M. Quirós, Gravitational backreaction effects on the holographic phase transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Y. Eshel, S.J. Lee, G. Perez and Y. Soreq, Shining flavor and radion phenomenology in warped extra dimension, JHEP 10 (2011) 015 [arXiv:1106.6218] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Z. Chacko and R.K. Mishra, Effective theory of a light dilaton, Phys. Rev. D 87 (2013) 115006 [arXiv:1209.3022] [INSPIRE].ADSGoogle Scholar
  35. [35]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Higgslike dilaton, Eur. Phys. J. C 73 (2013) 2333 [arXiv:1209.3299] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A naturally light dilaton and a small cosmological constant, arXiv:1305.3919 [INSPIRE].
  37. [37]
    N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, in Gravitation, an introduction to current research, chapter 7, L. Witten ed., Wiley, New York U.S.A. (1962), pg. 227.Google Scholar
  40. [40]
    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    G. Gibbons and S. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].MathSciNetADSGoogle Scholar
  42. [42]
    R.M. Wald, General relativity, Chicago Univ. Pr., Chicago U.S.A. (1984).Google Scholar
  43. [43]
    C. Charmousis, R. Gregory and V. Rubakov, Wave function of the radion in a brane world, Phys. Rev. D 62 (2000) 067505 [hep-th/9912160] [INSPIRE].MathSciNetADSGoogle Scholar
  44. [44]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  46. [46]
    N. Kaloper, Bent domain walls as brane worlds, Phys. Rev. D 60 (1999) 123506 [hep-th/9905210] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    E. Kiritsis and F. Nitti, On massless 4D gravitons from asymptotically AdS 5 space-times, Nucl. Phys. B 772 (2007) 67 [hep-th/0611344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    J. Lesgourgues and L. Sorbo, Goldberger-Wise variations: stabilizing brane models with a bulk scalar, Phys. Rev. D 69 (2004) 084010 [hep-th/0310007] [INSPIRE].ADSGoogle Scholar
  49. [49]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO Adv. Study Inst. Ser. B 59 (1980) 135 [INSPIRE].
  50. [50]
    R. Sundrum, in preparation.Google Scholar
  51. [51]
    R. Sundrum, Metaphor for dark energy, http://www.stanford.edu/dept/physics/events/2012/SavasFest/slides/Raman%20Sundrum.pdf, talk given at Stanford University, U.S.A. May 19 2012.
  52. [52]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  53. [53]
    J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys. B 297 (1988) 787 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological constant, Nucl. Phys. B 602 (2001) 307 [hep-th/0005276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    T.S. Koivisto and N.J. Nunes, Inflation and dark energy from three-forms, Phys. Rev. D 80 (2009) 103509 [arXiv:0908.0920] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Francesco Coradeschi
    • 1
  • Paolo Lodone
    • 1
  • Duccio Pappadopulo
    • 2
    • 3
  • Riccardo Rattazzi
    • 1
  • Lorenzo Vitale
    • 1
  1. 1.Institut de Théorie des Phénomènes PhysiquesEPFLLausanneSwitzerland
  2. 2.Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  3. 3.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.

Personalised recommendations