Advertisement

Journal of High Energy Physics

, 2013:39 | Cite as

Dipole-dipole scattering in CGC/saturation approach at high energy: summing Pomeron loops

  • Eugene Levin
Article

Abstract

In this paper we demonstrate that the dense system of partons (gluons) can be produced in dilute-dilute system scattering, using the example of dipole-dipole collisions. This increase in density stems from the intensive gluon cascades that can be described by the enhanced BFKL Pomeron diagrams (Pomeron loops). For the first time we found the analytical solution to the equation for diffraction production in the dipole-dense parton system scattering, using the simplified BFKL kernel. Having this solution as well as the solution to Balitsky- Kovchegov equation we developed technique that allowed us to calculate the total cross section, cross sections for single and double diffractions in the MPSI approximation. Calculating inclusive production and two gluon correlations we see that the dense and strongly correlated system of gluons can be produced at high energy in the dipole-dipole scattering.

Keywords

Resummation QCD 

References

  1. [1]
    L. Gribov, E. Levin and M. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A.H. Mueller and J.-w. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L.D. McLerran and R. Venugopalan, Computing quark and gluon distribution functions for very large nuclei, Phys. Rev. D 49 (1994) 2233 [hep-ph/9309289] [INSPIRE].ADSGoogle Scholar
  4. [4]
    L.D. McLerran and R. Venugopalan, Greens functions in the color field of a large nucleus, Phys. Rev. D 50 (1994) 2225 [hep-ph/9402335] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Ayala, J. Jalilian-Marian, L.D. McLerran and R. Venugopalan, Quantum corrections to the Weizsacker-Williams gluon distribution function at small x, Phys. Rev. D 53 (1996) 458 [hep-ph/9508302] [INSPIRE].ADSGoogle Scholar
  6. [6]
    L.D. McLerran and R. Venugopalan, Fock space distributions, structure functions, higher twists and small x, Phys. Rev. D 59 (1999) 094002 [hep-ph/9809427] [INSPIRE].ADSGoogle Scholar
  7. [7]
    I. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys. B 463 (1996) 99 [hep-ph/9509348] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    Y.V. Kovchegov, Small-x F 2 structure function of a nucleus including multiple Pomeron exchanges, Phys. Rev. D 60 (1999) 034008 [hep-ph/9901281] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].ADSGoogle Scholar
  12. [12]
    A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].ADSGoogle Scholar
  13. [13]
    E. Iancu, A. Leonidov and L.D. McLerran, The renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Yuri V. Kovchegov and Eugene Levin, Quantum Chromodynamics at High Energies, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, (2012).Google Scholar
  18. [18]
    E. Levin and A.H. Rezaeian, Gluon saturation and energy dependence of hadron multiplicity in pp and AA collisions at the LHC, Phys. Rev. D 83 (2011) 114001 [arXiv:1102.2385] [INSPIRE].ADSGoogle Scholar
  19. [19]
    E. Levin and A.H. Rezaeian, Hadron production at the LHC: Any indication of new phenomena, AIP Conf. Proc. 1350 (2011) 243 [arXiv:1011.3591] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Levin and A.H. Rezaeian, Hadron multiplicity in pp and AA collisions at LHC from the Color Glass Condensate, Phys. Rev. D 82 (2010) 054003 [arXiv:1007.2430] [INSPIRE].ADSGoogle Scholar
  21. [21]
    E. Levin and A.H. Rezaeian, Gluon saturation and inclusive hadron production at LHC, Phys. Rev. D 82 (2010) 014022 [arXiv:1005.0631] [INSPIRE].ADSGoogle Scholar
  22. [22]
    P. Tribedy and R. Venugopalan, Saturation models of HERA DIS data and inclusive hadron distributions in p + p collisions at the LHC, Nucl. Phys. A 850 (2011) 136 [Erratum ibid. A 859 (2011) 185-187] [arXiv:1011.1895] [INSPIRE].
  23. [23]
    E. Levin and A.H. Rezaeian, The ridge from the BFKL evolution and beyond, Phys. Rev. D 84 (2011) 034031 [arXiv:1105.3275] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Dusling and R. Venugopalan, Azimuthal collimation of long range rapidity correlations by strong color fields in high multiplicity hadron-hadron collisions, Phys. Rev. Lett. 108 (2012) 262001 [arXiv:1201.2658] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    K. Dusling and R. Venugopalan, Evidence for BFKL and saturation dynamics from dihadron spectra at the LHC, Phys. Rev. D 87 (2013) 051502 [arXiv:1210.3890] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Kovner and M. Lublinsky, Angular and long range rapidity correlations in particle production at high energy, Int. J. Mod. Phys. E 22 (2013) 1330001 [arXiv:1211.1928] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    W. Li, Observation of aRidgecorrelation structure in high multiplicity proton-proton collisions: A brief review, Mod. Phys. Lett. A 27 (2012) 1230018 [arXiv:1206.0148] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    CMS collaboration, Observation of Long-Range Near-Side Angular Correlations in Proton-Proton Collisions at the LHC, JHEP 09 (2010) 091 [arXiv:1009.4122] [INSPIRE].Google Scholar
  29. [29]
    CMS collaboration, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718 (2013) 795 [arXiv:1210.5482] [INSPIRE].ADSGoogle Scholar
  30. [30]
    ALICE collaboration, Long-range angular correlations on the near and away side in p-Pb collisions at \( \sqrt{{{s_{NN }}}}=5.02 \) TeV, Phys. Lett. B 719 (2013) 29 [arXiv:1212.2001] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    ATLAS collaboration, Observation of Associated Near-side and Away-side Long-range Correlations in \( \sqrt{{{s_{NN }}}}=5.02 \) TeV Proton-lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110 (2013) 182302 [arXiv:1212.5198] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    PHENIX collaboration, A. Adare et al., Dihadron azimuthal correlations in Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. C 78 (2008) 014901 [arXiv:0801.4545] [INSPIRE].ADSGoogle Scholar
  33. [33]
    STAR collaboration, B. Abelev et al., Long range rapidity correlations and jet production in high energy nuclear collisions, Phys. Rev. C 80 (2009) 064912 [arXiv:0909.0191] [INSPIRE].ADSGoogle Scholar
  34. [34]
    PHOBOS collaboration, B. Alver et al., High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au+Au collisions at \( \sqrt{{{s_{NN }}}}=200 \) GeV, Phys. Rev. Lett. 104 (2010) 062301 [arXiv:0903.2811] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    CMS collaboration, Azimuthal anisotropy of charged particles at high transverse momenta in PbPb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Phys. Rev. Lett. 109 (2012) 022301 [arXiv:1204.1850] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    CMS collaboration, Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Eur. Phys. J. C 72 (2012) 2012 [arXiv:1201.3158] [INSPIRE].ADSGoogle Scholar
  37. [37]
    ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle production in \( \sqrt{{{s_{NN }}}}=2.76 \) TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907 [arXiv:1203.3087] [INSPIRE].ADSGoogle Scholar
  38. [38]
    ATLAS collaboration, Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt{{{s_{NN }}}}=2.77 \) TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    ALICE collaboration, Harmonic decomposition of two-particle angular correlations in Pb-Pb collisions at \( \sqrt{{{s_{NN }}}}=2.76 \) TeV, Phys. Lett. B 708 (2012) 249 [arXiv:1109.2501] [INSPIRE].ADSGoogle Scholar
  40. [40]
    ATLAS collaboration, Measurement of hard double-parton interactions in W (→ )+ 2 jet events at \( \sqrt{s}=7 \) TeV with the ATLAS detector, New J. Phys. 15 (2013) 033038 [arXiv:1301.6872] [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    D0 collaboration, V. Abazov et al., Double parton interactions in photon+3 jet events in pp bar collisions \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 81 (2010) 052012 [arXiv:0912.5104] [INSPIRE].ADSGoogle Scholar
  42. [42]
    CDF collaboration, F. Abe et al., Study of four jet events and evidence for double parton interactions in pp collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 47 (1993) 4857 [INSPIRE].ADSGoogle Scholar
  43. [43]
    CDF collaboration, F. Abe et al., Double parton scattering in pp collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 56 (1997) 3811 [INSPIRE].ADSGoogle Scholar
  44. [44]
    UA2 collaboration, J. Alitti et al., A Study of multi-jet events at the CERN pp collider and a search for double parton scattering, Phys. Lett. B 268 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    Axial Field Spectrometer collaboration, T. Akesson et al., Double Parton Scattering in pp Collisions at \( \sqrt{s}=63 \) -GeV, Z. Phys. C 34 (1987) 163 [INSPIRE].ADSGoogle Scholar
  46. [46]
    E. Gotsman, E. Levin and U. Maor, Description of LHC data in a soft interaction model, Phys. Lett. B 716 (2012) 425 [arXiv:1208.0898] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    ALICE collaboration, Charged-particle multiplicity measurement in proton-proton collisions at \( \sqrt{s}=0.9 \) and 2.36 TeV with ALICE at LHC, Eur. Phys. J. C 68 (2010) 89 [arXiv:1004.3034] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CMS collaboration, Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at \( \sqrt{s}=0.9 \) and 2.36 TeV, JHEP 02 (2010) 041 [arXiv:1002.0621] [INSPIRE].Google Scholar
  49. [49]
    ATLAS collaboration, Charged-particle multiplicities in pp interactions at \( \sqrt{s}=900 \) GeV measured with the ATLAS detector at the LHC, Phys. Lett. B 688 (2010) 21 [arXiv:1003.3124] [INSPIRE].ADSGoogle Scholar
  50. [50]
    E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    I. Balitsky and L. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [INSPIRE].Google Scholar
  52. [52]
    L. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    L. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [INSPIRE].Google Scholar
  54. [54]
    M. Braun, Nucleus-nucleus scattering in perturbative QCD with N c → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Braun, Structure function of the nucleus in the perturbative QCD with N c → ∞ (BFKL Pomeron fan diagrams), Eur. Phys. J. C 16 (2000) 337 [hep-ph/0001268] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large-N c, Phys. Lett. B 632 (2006) 297 [Eur. Phys. J. C 48 (2006) 511] [hep-ph/0512057] [INSPIRE].
  58. [58]
    M. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    A.H. Mueller and G. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    E. Iancu and A. Mueller, From color glass to color dipoles in high-energy onium onium scattering, Nucl. Phys. A 730 (2004) 460 [hep-ph/0308315] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E. Levin, J. Miller and A. Prygarin, Summing Pomeron loops in the dipole approach, Nucl. Phys. A 806 (2008) 245 [arXiv:0706.2944] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    E. Levin and M. Lublinsky, A linear evolution for nonlinear dynamics and correlations in realistic nuclei, Nucl. Phys. A 730 (2004) 191 [hep-ph/0308279] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    E. Levin and M. Lublinsky, Balitskys hierarchy from Muellers dipole model and more about target correlations, Phys. Lett. B 607 (2005) 131 [hep-ph/0411121] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    A. Mueller and A. Shoshi, Small x physics beyond the Kovchegov equation, Nucl. Phys. B 692 (2004) 175 [hep-ph/0402193] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    E. Levin and K. Tuchin, Solution to the evolution equation for high parton density QCD, Nucl. Phys. B 573 (2000) 833 [hep-ph/9908317] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    A. Kormilitzin, E. Levin and S. Tapia, Geometric scaling behavior of the scattering amplitude for DIS with nuclei, Nucl. Phys. A 872 (2011) 245 [arXiv:1106.3268] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    V. Gribov and L. Lipatov, Deep inelastic e p scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [INSPIRE].Google Scholar
  72. [72]
    Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e + e Annihilation by Perturbation Theory in Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641 [INSPIRE].ADSGoogle Scholar
  73. [73]
    E. Iancu, K. Itakura and L. McLerran, Geometric scaling above the saturation scale, Nucl. Phys. A 708 (2002) 327 [hep-ph/0203137] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    A. Mueller and D. Triantafyllopoulos, The energy dependence of the saturation momentum, Nucl. Phys. B 640 (2002) 331 [hep-ph/0205167] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    D. Triantafyllopoulos, The energy dependence of the saturation momentum from RG improved BFKL evolution, Nucl. Phys. B 648 (2003) 293 [hep-ph/0209121] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    J. Bartels and E. Levin, Solutions to the Gribov-Levin-Ryskin equation in the nonperturbative region, Nucl. Phys. B 387 (1992) 617 [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    A. Stasto, K.J. Golec-Biernat and J. Kwiecinski, Geometric scaling for the total γ p cross-section in the low x region, Phys. Rev. Lett. 86 (2001) 596 [hep-ph/0007192] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    L. McLerran and M. Praszalowicz, Saturation and Scaling of Multiplicity, Mean p T and p T Distributions from 200 GeV < \( \sqrt{s} \) < 7 TeV - Addendum, Acta Phys. Polon. B 42 (2011) 99 [arXiv:1011.3403] [INSPIRE].CrossRefGoogle Scholar
  79. [79]
    L. McLerran and M. Praszalowicz, Saturation and Scaling of Multiplicity, Mean p T and p T Distributions from 200 GeV < \( \sqrt{s} \) < 7 TeV Acta Phys. Polon. B 41 (2010) 1917 [arXiv:1006.4293] [INSPIRE].Google Scholar
  80. [80]
    M. Praszalowicz, Geometrical Scaling in Hadronic Collisions, Acta Phys. Polon. B 42 (2011) 1557 [arXiv:1104.1777] [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    M. Praszalowicz, Improved Geometrical Scaling at the LHC, Phys. Rev. Lett. 106 (2011) 142002 [arXiv:1101.0585] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Andrei D. Polyanin and Valentin F. Zaitsev, Handbook of nonlinear Partial Differential Equations, Chapman & Hall/CRC, (2004).Google Scholar
  83. [83]
    M. Kozlov and E. Levin, The Iancu-Muller factorization and high-energy asymptotic behaviour, Nucl. Phys. A 739 (2004) 291 [hep-ph/0401118] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A. Kovner and U.A. Wiedemann, Nonlinear QCD evolution: Saturation without unitarization, Phys. Rev. D 66 (2002) 051502 [hep-ph/0112140] [INSPIRE].ADSGoogle Scholar
  85. [85]
    A. Kovner and U.A. Wiedemann, Perturbative saturation and the soft Pomeron, Phys. Rev. D 66 (2002) 034031 [hep-ph/0204277] [INSPIRE].ADSGoogle Scholar
  86. [86]
    A. Kovner and U.A. Wiedemann, No Froissart bound from gluon saturation, Phys. Lett. B 551 (2003) 311 [hep-ph/0207335] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    E. Gotsman, E. Levin, M. Lublinsky, U. Maor and K. Tuchin, Energy dependence of diffractive production at HERA, Nucl. Phys. A 697 (2002) 521 [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A.H. Mueller, Small x Behavior and Parton Saturation: A QCD Model, Nucl. Phys. B 335 (1990) 115 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  89. [89]
    N. Armesto and M. Braun, Parton densities and dipole cross-sections at small x in large nuclei, Eur. Phys. J. C 20 (2001) 517 [hep-ph/0104038] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    M. Lublinsky, E. Gotsman, E. Levin and U. Maor, Nonlinear evolution and parton distributions at LHC and THERA energies, Nucl. Phys. A 696 (2001) 851 [hep-ph/0102321] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    M. Lublinsky, Scaling phenomena from nonlinear evolution in high-energy DIS, Eur. Phys. J. C 21 (2001) 513 [hep-ph/0106112] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    B. Kopeliovich, I. Potashnikova, B. Povh and I. Schmidt, Evidences for two scales in hadrons, Phys. Rev. D 76 (2007) 094020 [arXiv:0708.3636] [INSPIRE].ADSGoogle Scholar
  93. [93]
    I. Gradstein and I. Ryzhik, Table of Integrals, Series, and Products, Fifth Edition, Academic Press, London, (1994).Google Scholar
  94. [94]
    Y.V. Kovchegov and E. Levin, Diffractive dissociation including multiple Pomeron exchanges in high parton density QCD, Nucl. Phys. B 577 (2000) 221 [hep-ph/9911523] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    A. Kormilitzin, E. Levin and A. Prygarin, Multiparticle production in the mean field approximation of high density QCD, Nucl. Phys. A 813 (2008) 1 [arXiv:0807.3413] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    E. Levin and A. Prygarin, The BFKL Pomeron Calculus in zero transverse dimension: Summation of the Pomeron loops and the generating functional for the multiparticle production processes, Eur. Phys. J. C 53 (2008) 385 [hep-ph/0701178] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    Y.V. Kovchegov and K. Tuchin, Inclusive gluon production in DIS at high parton density, Phys. Rev. D 65 (2002) 074026 [hep-ph/0111362] [INSPIRE].ADSGoogle Scholar
  98. [98]
    T. Altinoluk, C. Contreras, A. Kovner, E. Levin, M. Lublinsky and A. Shulkin, QCD Reggeon Calculus From KLWMIJ/JIMWLK Evolution: Vertices, Reggeization and All, JHEP 09 (2013) 115 [arXiv:1306.2794] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Department of Particle Physics, School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  2. 2.Departamento de FísicaUniversidad Técnica Federico Santa María, Centro Cientıfico-Tecnológico de ValparaísoValparaísoChile

Personalised recommendations