Advertisement

Journal of High Energy Physics

, 2012:173 | Cite as

All homogeneous N = 2 M-theory truncations with supersymmetric AdS4 vacua

  • Davide Cassani
  • Paul Koerber
  • Oscar Varela
Article

Abstract

We study consistent truncations of M-theory to gauged N = 2 supergravity in four dimensions, based on a large class of SU(3)-structures in seven dimensions. We show that the gauging involves isometries of the vector multiplet scalar manifold as well as the Heisenberg algebra and a special isometry of the hyperscalar manifold. As a result, non-abelian gauge groups and new non-trivial scalar potentials are generated. Then we specialize to all homogeneous SU(3)-structures supporting supersymmetric AdS4 vacua. These are the Stiefel manifold V 5,2, the Aloff-Wallach spaces N (k, l), the seven-sphere (seen as SU(4)/SU(3) or Sp(2)/Sp(1)) and the M 110 and Q 111 coset spaces. For each of these cases, we describe in detail the N = 2 model and discuss its peculiarities.

Keywords

Flux compactifications Supergravity Models M-Theory AdS-CFT Correspondence 

References

  1. [1]
    A. Buchel and J.T. Liu, Gauged supergravity from type IIB string theory on Y p,q manifolds, Nucl. Phys. B 771 (2007) 93 [hep-th/0608002] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J.P. Gauntlett and O. Varela, Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions, Phys. Rev. D 76 (2007) 126007 [arXiv:0707.2315] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    J.P. Gauntlett, E. O Colgain and O. Varela, Properties of some conformal field theories with M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    J.P. Gauntlett and O. Varela, D = 5 SU (2) × U (1) Gauged Supergravity from D = 11 Supergravity, JHEP 02 (2008) 083 [arXiv:0712.3560] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    J.P. Gauntlett, S. Kim, O. Varela and D. Waldram, Consistent supersymmetric Kaluza-Klein truncations with massive modes, JHEP 04 (2009) 102 [arXiv:0901.0676] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D. Cassani and A.-K. Kashani-Poor, Exploiting N = 2 in consistent coset reductions of type IIA, Nucl. Phys. B 817 (2009) 25 [arXiv:0901.4251] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Cassani, G. Dall’Agata and A.F. Faedo, Type IIB supergravity on squashed Sasaki-Einstein manifolds, JHEP 05 (2010) 094 [arXiv:1003.4283] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4 supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J.T. Liu, P. Szepietowski and Z. Zhao, Consistent massive truncations of IIB supergravity on Sasaki-Einstein manifolds, Phys. Rev. D 81 (2010) 124028 [arXiv:1003.5374] [INSPIRE].ADSGoogle Scholar
  10. [10]
    D. Cassani and A.F. Faedo, A Supersymmetric consistent truncation for conifold solutions, Nucl. Phys. B 843 (2011) 455 [arXiv:1008.0883] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and F. Orsi, Supersymmetric Consistent Truncations of IIB on T 1,1, JHEP 04 (2011) 021 [arXiv:1008.0983] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. O Colgain and H. Samtleben, 3D gauged supergravity from wrapped M5-branes with AdS/CMT applications, JHEP 02 (2011) 031 [arXiv:1012.2145] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    D. Cassani and P. Koerber, Tri-Sasakian consistent reduction, JHEP 01 (2012) 086 [arXiv:1110.5327] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. O Colgain and O. Varela, Consistent reductions from D = 11 beyond Sasaki-Einstein, Phys. Lett. B 703 (2011) 180 [arXiv:1106.4781] [INSPIRE].ADSGoogle Scholar
  15. [15]
    L. Girardello, M. Petrini, M. Porrati and A. Zaffaroni, Novel local CFT and exact results on perturbations of N = 4 super Yang-Mills from AdS dynamics, JHEP 12 (1998) 022 [hep-th/9810126] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    D. Freedman, S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].MathSciNetMATHGoogle Scholar
  17. [17]
    R. Corrado, K. Pilch and N.P. Warner, An N = 2 supersymmetric membrane flow, Nucl. Phys. B 629 (2002) 74 [hep-th/0107220] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    N. Bobev, N. Halmagyi, K. Pilch and N.P. Warner, Holographic, N = 1 Supersymmetric RG Flows on M2 Branes, JHEP 09 (2009) 043 [arXiv:0901.2736] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum Criticality and Holographic Superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from Superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    F. Aprile, D. Roest and J.G. Russo, Holographic Superconductors from Gauged Supergravity, JHEP 06 (2011) 040 [arXiv:1104.4473] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    F. Aprile, D. Rodriguez-Gomez and J.G. Russo, p-wave Holographic Superconductors and five-dimensional gauged Supergravity, JHEP 01 (2011) 056 [arXiv:1011.2172] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    N. Bobev, A. Kundu, K. Pilch and N.P. Warner, Minimal Holographic Superconductors from Maximal Supergravity, JHEP 03 (2012) 064 [arXiv:1110.3454] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Emergent Quantum Near-Criticality from Baryonic Black Branes, JHEP 03 (2010) 093 [arXiv:0911.0400] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    B. de Wit and H. Nicolai, The Consistency of the S 7 Truncation in D = 11 Supergravity, Nucl. Phys. B 281 (1987) 211 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Nicolai and K. Pilch, Consistent Truncation of D = 11 Supergravity on AdS 4 × S 7, JHEP 03 (2012) 099 [arXiv:1112.6131] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistent nonlinear K K reduction of 11 − D supergravity on AdS 7 × S 4 and selfduality in odd dimensions, Phys. Lett. B 469 (1999) 96 [hep-th/9905075] [INSPIRE].ADSGoogle Scholar
  34. [34]
    H. Nastase, D. Vaman and P. van Nieuwenhuizen, Consistency of the AdS 7 × S 4 reduction and the origin of selfduality in odd dimensions, Nucl. Phys. B 581 (2000) 179 [hep-th/9911238] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. Cvetič, H. Lü, C. Pope, A. Sadrzadeh and T.A. Tran, Consistent SO(6) reduction of type IIB supergravity on S 5, Nucl. Phys. B 586 (2000) 275 [hep-th/0003103] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L. Castellani, L. Romans and N. Warner, A classification of compactifying solutions for D = 11 supergravity, Nucl. Phys. B 241 (1984) 429 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    M. Duff, B. Nilsson and C. Pope, Kaluza-Klein Supergravity, Phys. Rept. 130 (1986) 1 [INSPIRE].
  38. [38]
    F. Reidegeld, Spaces admitting homogeneous G 2 -structures, arXiv:0901.0652.
  39. [39]
    M. Graña, Flux compactifications in string theory: A Comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    M. Graña, J. Louis and D. Waldram, Hitchin functionals in N = 2 supergravity, JHEP 01 (2006) 008 [hep-th/0505264] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A.-K. Kashani-Poor and R. Minasian, Towards reduction of type-II theories on SU(3) structure manifolds, JHEP 03 (2007) 109 [hep-th/0611106] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    A. Micu, E. Palti and P. Saffin, M-theory on seven-dimensional manifolds with SU(3) structure, JHEP 05 (2006) 048 [hep-th/0602163] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    O. Aharony, M. Berkooz, J. Louis and A. Micu, Non-Abelian structures in compactifications of M-theory on seven-manifolds with SU(3) structure, JHEP 09 (2008) 108 [arXiv:0806.1051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    H. Looyestijn, E. Plauschinn and S. Vandoren, New potentials from Scherk-Schwarz reductions, JHEP 12 (2010) 016 [arXiv:1008.4286] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    O. Varela, Tri-Sasakian consistent reduction, unpublished.Google Scholar
  47. [47]
    A.-K. Kashani-Poor, Nearly Kähler Reduction, JHEP 11 (2007) 026 [arXiv:0709.4482] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    A. Tomasiello, New string vacua from twistor spaces, Phys. Rev. D 78 (2008) 046007 [arXiv:0712.1396] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    P. Koerber, D. Lüst and D. Tsimpis, Type IIA AdS 4 compactifications on cosets, interpolations and domain walls, JHEP 07 (2008) 017 [arXiv:0804.0614] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Louis, P. Smyth and H. Triendl, Spontaneous N = 2 to N = 1 Supersymmetry Breaking in Supergravity and Type II String Theory, JHEP 02 (2010) 103 [arXiv:0911.5077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    J. Louis, P. Smyth and H. Triendl, The N = 1 Low-Energy Effective Action of Spontaneously Broken N = 2 Supergravities, JHEP 10 (2010) 017 [arXiv:1008.1214] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    J. Sparks, Sasaki-Einstein Manifolds, Surveys Diff. Geom. 16 (2011) 265 [arXiv:1004.2461] [INSPIRE].MathSciNetGoogle Scholar
  54. [54]
    J.L. Karthauser and P. Saffin, The Dynamics of coset dimensional reduction, Phys. Rev. D 73 (2006) 084027 [hep-th/0601230] [INSPIRE].MathSciNetADSGoogle Scholar
  55. [55]
    I.R. Klebanov, S.S. Pufu and T. Tesileanu, Membranes with Topological Charge and AdS 4 /CF T 3 Correspondence, Phys. Rev. D 81 (2010) 125011 [arXiv:1004.0413] [INSPIRE].ADSGoogle Scholar
  56. [56]
    P. Koerber, Lectures on Generalized Complex Geometry for Physicists, Fortsch. Phys. 59 (2011) 169 [arXiv:1006.1536] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  57. [57]
    G. Dall’Agata and N. Prezas, N = 1 geometries for M-theory and type IIA strings with fluxes, Phys. Rev. D 69 (2004) 066004 [hep-th/0311146] [INSPIRE].MathSciNetADSGoogle Scholar
  58. [58]
    K. Behrndt, M. Cvetič and T. Liu, Classification of supersymmetric flux vacua in M-theory, Nucl. Phys. B 749 (2006) 25 [hep-th/0512032] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S. Chiossi and S. Salamon, The Intrinsic torsion of SU(3) and G 2 structures, J. Diff. Geom. (2002) [math/0202282] [INSPIRE].
  60. [60]
    N.J. Hitchin, The geometry of three-forms in six and seven dimensions, math/0010054 [INSPIRE].
  61. [61]
    P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Strominger, Yukawa Couplings in Superstring Compactification, Phys. Rev. Lett. 55 (1985) 2547 [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions, Phys. Lett. B 76 (1978) 409 [INSPIRE].ADSGoogle Scholar
  64. [64]
    R. D’Auria, S. Ferrara, M. Trigiante and S. Vaula, Gauging the Heisenberg algebra of special quaternionic manifolds, Phys. Lett. B 610 (2005) 147 [hep-th/0410290] [INSPIRE].MathSciNetADSGoogle Scholar
  65. [65]
    T. House and E. Palti, Effective action of (massive) IIA on manifolds with SU(3) structure, Phys. Rev. D 72 (2005) 026004 [hep-th/0505177] [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    D. Cassani, S. Ferrara, A. Marrani, J.F. Morales and H. Samtleben, A Special road to AdS vacua, JHEP 02 (2010) 027 [arXiv:0911.2708] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  68. [68]
    B. de Wit, H. Samtleben and M. Trigiante, Magnetic charges in local field theory, JHEP 09 (2005) 016 [hep-th/0507289] [INSPIRE].CrossRefGoogle Scholar
  69. [69]
    B. de Wit and M. van Zalk, Electric and magnetic charges in N = 2 conformal supergravity theories, JHEP 10 (2011) 050 [arXiv:1107.3305] [INSPIRE].CrossRefGoogle Scholar
  70. [70]
    J. Michelson, Compactifications of type IIB strings to four-dimensions with nontrivial classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    J. Louis and A. Micu, Type 2 theories compactified on Calabi-Yau threefolds in the presence of background fluxes, Nucl. Phys. B 635 (2002) 395 [hep-th/0202168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D = 4, N = 2 gauged supergravity in the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210] [INSPIRE].MathSciNetADSGoogle Scholar
  73. [73]
    R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity Lagrangian coupled to tensor multiplets with electric and magnetic fluxes, JHEP 11 (2004) 028 [hep-th/0409097] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  74. [74]
    S. Ferrara and S. Sabharwal, Quaternionic Manifolds for Type II Superstring Vacua of Calabi-Yau Spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    B. de Wit, F. Vanderseypen and A. Van Proeyen, Symmetry structure of special geometries, Nucl. Phys. B 400 (1993) 463 [hep-th/9210068] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Graña, J. Louis and D. Waldram, SU (3) × SU (3) compactification and mirror duals of magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    R. D’Auria, S. Ferrara and M. Trigiante, On the supergravity formulation of mirror symmetry in generalized Calabi-Yau manifolds, Nucl. Phys. B 780 (2007) 28 [hep-th/0701247] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    D. Cassani and A. Bilal, Effective actions and N = 1 vacuum conditions from SU(3) × SU(3) compactifications, JHEP 09 (2007) 076 [arXiv:0707.3125] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    B. de Wit, P. Lauwers and A. Van Proeyen, Lagrangians of N = 2 Supergravity - Matter Systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    B. de Wit and A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces, Commun. Math. Phys. 149 (1992) 307 [hep-th/9112027] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  81. [81]
    C. Pope and N. Warner, An SU (4) invariant compactification of D = 11 supergravity on a stretched seven sphere, Phys. Lett. B 150 (1985) 352 [INSPIRE].MathSciNetADSGoogle Scholar
  82. [82]
    F. Englert, Spontaneous Compactification of Eleven-Dimensional Supergravity, Phys. Lett. B 119 (1982) 339 [INSPIRE].ADSGoogle Scholar
  83. [83]
    Y.G. Nikonorov, Compact homogeneous Einstein 7-manifolds, Geometriae Dedicata 109 (2004) 7.MathSciNetMATHCrossRefGoogle Scholar
  84. [84]
    C. Caviezel, P. Koerber, S. Körs, D. Lüst, D. Tsimpis, et al., The Effective theory of type IIA AdS 4 compactifications on nilmanifolds and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J.P. Gauntlett and S. Pakis, The Geometry of D = 11 Killing spinors, JHEP 04 (2003) 039 [hep-th/0212008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  86. [86]
    A. Lukas and P. Saffin, M theory compactification, fluxes and AdS 4, Phys. Rev. D 71 (2005) 046005 [hep-th/0403235] [INSPIRE].MathSciNetADSGoogle Scholar
  87. [87]
    M. Gabella, D. Martelli, A. Passias and J. Sparks, N = 2 supersymmetric AdS 4 solutions of M-theory, arXiv:1207.3082 [INSPIRE].
  88. [88]
    W.T. Shaw, Recovering holomorphic functions from their real or imaginary parts without the Cauchy-Riemann equations, SIAM Review 46 (2004) 717.MathSciNetADSMATHCrossRefGoogle Scholar
  89. [89]
    L. Castellani, L. Romans and N. Warner, Symmetries of coset spaces and Kaluza-Klein supergravity, Annals Phys. 157 (1984) 394 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  90. [90]
    J. Held, BPS-like potential for compactifications of heterotic M-theory?, JHEP 10 (2011) 136 [arXiv:1109.1974] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  91. [91]
    R.L. Bryant, Some remarks on G 2 -structures, math/0305124 [INSPIRE].
  92. [92]
    F. Mueller-Hoissen and R. Stuckl, Coset spaces and ten-dimensional unified theories, Class. Quant. Grav. 5 (1988) 27 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  93. [93]
    L. Castellani and L. Romans, N = 3 and N = 1 supersymmetry in a new class of solutions for D = 11 supergravity, Nucl. Phys. B 238 (1984) 683 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    D.N. Page and C. Pope, New squashed solutions of D = 11 supergravity, Phys. Lett. B 147 (1984) 55 [INSPIRE].MathSciNetADSGoogle Scholar
  95. [95]
    D.V. Alekseevsky, I. Dotti and C. Ferraris, Homogeneous Ricci positive 5-manifolds, Pacific J. Math. 175 (1996) 1.MathSciNetGoogle Scholar
  96. [96]
    D. Fabbri, P. Fré, L. Gualtieri and P. Termonia, M theory on AdS 4 × M 111 : The Complete Osp(2|4)xSU (3) × SU (2) spectrum from harmonic analysis, Nucl. Phys. B 560 (1999) 617 [hep-th/9903036] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    P. Merlatti, M theory on AdS 4 × Q 111 : The Complete Osp(2|4) × SU (2) × SU (2) × SU (2) spectrum from harmonic analysis, Class. Quant. Grav. 18 (2001) 2797 [hep-th/0012159] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  98. [98]
    A. Ceresole, G. Dall’Agata, R. D’Auria and S. Ferrara, M theory on the Stiefel manifold and 3 − D conformal field theories, JHEP 03 (2000) 011 [hep-th/9912107] [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of MathematicsKing’s College LondonLondonUnited Kingdom
  2. 2.Instituut voor Theoretische FysicaKatholieke Universiteit Leuven Celestijnenlaan 200DLeuvenBelgium
  3. 3.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations