Journal of High Energy Physics

, 2012:142 | Cite as

Matter density perturbations in modified teleparallel theories

  • Yi-Peng Wu
  • Chao-Qiang Geng


We study the matter density perturbations in modified teleparallel gravity theories, where extra degrees of freedom arise from the local Lorentz violation in the tangent space. We formulate a vierbein perturbation with variables addressing all the 16 components of the vierbein field. By assuming the perfect fluid matter source, we examine the cosmological implication of the 6 unfamiliar new degrees of freedom in modified f (T) gravity theories. We find that despite the new modes in the vierbein scenario provide no explicit significant effect in the small-scale regime, they exhibit some deviation from the standard general relativity results in super-horizon scales.


Cosmology of Theories beyond the SM Classical Theories of Gravity 


  1. [1]
    A. Einstein, Riemannian Geometry with Maintaining the Notion of Distant Parallelism, Sitz. Preuss. Akad. Wiss. (1928) 217.Google Scholar
  2. [2]
    A. Einstein, New Possibility for a Unified Field Theory of Gravitation and Electricity, Sitz. Preuss. Akad. Wiss. (1928) 224.Google Scholar
  3. [3]
    A. Unzicker and T. Case, Translation of Einsteins attempt of a unified field theory with teleparallelism, physics/0503046 [INSPIRE].
  4. [4]
    K. Hayashi and T. Shirafuji, New General Relativity, Phys. Rev. D 19 (1979) 3524 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    K. Hayashi and T. Shirafuji, Addendum toNew general relativity”, Phys. Rev. D 24 (1981) 3312.MathSciNetADSGoogle Scholar
  6. [6]
    J. Maluf, Hamiltonian formulation of the teleparallel description of general relativity, J. Math. Phys. 35 (1994) 335 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    R. Ferraro and F. Fiorini, Modified teleparallel gravity: Inflation without inflaton, Phys. Rev. D 75 (2007) 084031 [gr-qc/0610067] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    R. Ferraro and F. Fiorini, On Born-Infeld Gravity in Weitzenbock spacetime, Phys. Rev. D 78 (2008) 124019 [arXiv:0812.1981] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    R. Myrzakulov, Accelerating universe from F(T) gravity, Eur. Phys. J. C 71 (2011) 1752 [arXiv:1006.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G.R. Bengochea, Observational information for f(T) theories and Dark Torsion, Phys. Lett. B 695 (2011) 405 [arXiv:1008.3188] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P. Wu and H.W. Yu, f (T) models with phantom divide line crossing, Eur. Phys. J. C 71 (2011) 1552 [arXiv:1008.3669] [INSPIRE].ADSGoogle Scholar
  12. [12]
    K. Bamba, C.-Q. Geng and C.-C. Lee, Comment onEinsteins Other Gravity and the Acceleration of the Universe”, arXiv:1008.4036 [INSPIRE].
  13. [13]
    K. Bamba, C.-Q. Geng, C.-C. Lee and L.-W. Luo, Equation of state for dark energy in f (T) gravity, JCAP 01 (2011) 021 [arXiv:1011.0508] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    K. Yerzhanov, S. Myrzakul, I. Kulnazarov and R. Myrzakulov, Accelerating cosmology in F (T) gravity with scalar field, arXiv:1006.3879 [INSPIRE].
  15. [15]
    P. Wu and H.W. Yu, Observational constraints on f (T) theory, Phys. Lett. B 693 (2010) 415 [arXiv:1006.0674] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    P. Wu and H.W. Yu, The dynamical behavior of f (T) theory, Phys. Lett. B 692 (2010) 176 [arXiv:1007.2348] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    X.-c. Ao, X.-z. Li and P. Xi, Analytical approach of late-time evolution in a torsion cosmology, Phys. Lett. B 694 (2010) 186 [arXiv:1010.4117] [INSPIRE].MathSciNetADSGoogle Scholar
  18. [18]
    T. Wang, Static Solutions with Spherical Symmetry in f (T) Theories, Phys. Rev. D 84 (2011) 024042 [arXiv:1102.4410] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Zhang, H. Li, Y. Gong and Z.-H. Zhu, Notes on f (T) Theories, JCAP 07 (2011) 015 [arXiv:1103.0719] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y.-F. Cai, S.-H. Chen, J.B. Dent, S. Dutta and E.N. Saridakis, Matter Bounce Cosmology with the f (T) Gravity, Class. Quant. Grav. 28 (2011) 215011 [arXiv:1104.4349] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    R. Ferraro and F. Fiorini, Non trivial frames for f (T) theories of gravity and beyond, Phys. Lett. B 702 (2011) 75 [arXiv:1103.0824] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    S. Chattopadhyay and U. Debnath, Emergent universe in chameleon, f (R) and f (T) gravity theories, Int. J. Mod. Phys. D 20 (2011) 1135 [arXiv:1105.1091] [INSPIRE].ADSGoogle Scholar
  23. [23]
    M. Sharif and S. Rani, F (T) Models within Bianchi Type I Universe, Mod. Phys. Lett. A 26 (2011) 1657 [arXiv:1105.6228] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    H. Wei, X.-P. Ma and H.-Y. Qi, f (T) Theories and Varying Fine Structure Constant, Phys. Lett. B 703 (2011) 74 [arXiv:1106.0102] [INSPIRE].ADSGoogle Scholar
  25. [25]
    R. Ferraro and F. Fiorini, Cosmological frames for theories with absolute parallelism, Int. J. Mod. Phys. Conf. Ser. 3 (2011) 227 [arXiv:1106.6349] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    R.-X. Miao, M. Li and Y.-G. Miao, Violation of the first law of black hole thermodynamics in f (T) gravity, JCAP 11 (2011) 033 [arXiv:1107.0515] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    C.G. Boehmer, A. Mussa and N. Tamanini, Existence of relativistic stars in f (T) gravity, Class. Quant. Grav. 28 (2011) 245020 [arXiv:1107.4455] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H. Wei, H.-Y. Qi and X.-P. Ma, Constraining f (T) Theories with the Varying Gravitational Constant, Eur. Phys. J. C 72 (2012) 2117 [arXiv:1108.0859] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Capozziello, V. Cardone, H. Farajollahi and A. Ravanpak, Cosmography in f(T)-gravity, Phys. Rev. D 84 (2011) 043527 [arXiv:1108.2789] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P. Wu and H. Yu, The Stability of the Einstein static state in f (T) gravity, Phys. Lett. B 703 (2011) 223 [arXiv:1108.5908] [INSPIRE].MathSciNetADSGoogle Scholar
  31. [31]
    M. Hamani Daouda, M.E. Rodrigues and M. Houndjo, Static Anisotropic Solutions in f (T) Theory, Eur. Phys. J. C 72 (2012) 1890 [arXiv:1109.0528] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K. Bamba and C.-Q. Geng, Thermodynamics of cosmological horizons in f (T) gravity, JCAP 11 (2011) 008 [arXiv:1109.1694] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Ferraro and F. Fiorini, Spherically symmetric static spacetimes in vacuum f(T) gravity, Phys. Rev. D 84 (2011) 083518 [arXiv:1109.4209] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Y.-P. Wu and C.-Q. Geng, Primordial Fluctuations within Teleparallelism, arXiv:1110.3099 [INSPIRE].
  35. [35]
    P. Gonzalez, E.N. Saridakis and Y. Vasquez, Circularly symmetric solutions in three-dimensional Teleparallel, f (T) and Maxwell-f (T) gravity, JHEP 07 (2012) 053 [arXiv:1110.4024] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K. Karami and A. Abdolmaleki, Holographic and new agegraphic f (T)-gravity models with power-law entropy correction, arXiv:1111.7269 [INSPIRE].
  37. [37]
    H. Wei, X.-J. Guo and L.-F. Wang, Noether Symmetry in f (T) Theory, Phys. Lett. B 707 (2012) 298 [arXiv:1112.2270] [INSPIRE].ADSGoogle Scholar
  38. [38]
    K. Atazadeh and F. Darabi, f (T) cosmology via Noether symmetry, Eur. Phys. J. C 72 (2012) 2016 [arXiv:1112.2824] [INSPIRE].ADSGoogle Scholar
  39. [39]
    H. Farajollahi, A. Ravanpak and P. Wu, Cosmic acceleration and phantom crossing in f (T)-gravity, Astrophys. Space Sci. 338 (2012) 23 [arXiv:1112.4700] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    K. Karami and A. Abdolmaleki, Generalized second law of thermodynamics in f(T)-gravity, JCAP 04 (2012) 007 [arXiv:1201.2511] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    K. Karami and A. Abdolmaleki, QCD ghost f (T)-gravity model, arXiv:1202.2278 [INSPIRE].
  42. [42]
    K. Bamba, R. Myrzakulov, S. Nojiri and S.D. Odintsov, Reconstruction of f (T) gravity: Rip cosmology, finite-time future singularities and thermodynamics, Phys. Rev. D 85 (2012) 104036 [arXiv:1202.4057] [INSPIRE].ADSGoogle Scholar
  43. [43]
    K. Bamba, M. Jamil, D. Momeni and R. Myrzakulov, Generalized Second Law of Thermodynamics in f (T) Cosmology with Power-Law and Logarithmic Corrected Entropies, arXiv:1202.6114 [INSPIRE].
  44. [44]
    D. Liu, P. Wu and H. Yu, Gódel-type universes in f(T) gravity, Int. J. Mod. Phys. D 21 (2012) 1250074 [arXiv:1203.2016] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L. Iorio and E.N. Saridakis, Solar system constraints on f (T) gravity, arXiv:1203.5781 [INSPIRE].
  46. [46]
    N. Tamanini and C.G. Boehmer, Good and bad tetrads in f (T) gravity, Phys. Rev. D 86 (2012) 044009 [arXiv:1204.4593] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Behboodi, S. Akhshabi and K. Nozari, Matter stability in modified teleparallel gravity, Phys. Lett. B 718 (2012) 30 [arXiv:1205.4570] [INSPIRE].ADSGoogle Scholar
  48. [48]
    H. Dong, Y.-B. Wang and X.-H. Meng, Birkhoffs Theorem in f (T) Gravity upto the Perturbative Order, Eur. Phys. J. 72 (2012) 2201 [arXiv:1205.6385] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D. Liu and M. Reboucas, Energy conditions bounds on f(T) gravity, Phys. Rev. D 86 (2012) 083515 [arXiv:1207.1503] [INSPIRE].ADSGoogle Scholar
  50. [50]
    C.-Q. Geng, C.-C. Lee, E.N. Saridakis and Y.-P. Wu, ’TeleparallelDark Energy, Phys. Lett. B 704 (2011) 384 [arXiv:1109.1092] [INSPIRE].ADSGoogle Scholar
  51. [51]
    C.-Q. Geng, C.-C. Lee and E.N. Saridakis, Observational Constraints on Teleparallel Dark Energy, JCAP 01 (2012) 002 [arXiv:1110.0913] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    H. Wei, Dynamics of Teleparallel Dark Energy, Phys. Lett. B 712 (2012) 430 [arXiv:1109.6107] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C. Xu, E.N. Saridakis and G. Leon, Phase-Space analysis of Teleparallel Dark Energy, JCAP 07 (2012) 005 [arXiv:1202.3781] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J.-A. Gu, C.-C. Lee and C.-Q. Geng, Tracker Teleparallel Dark Energy with Purely Non-minimal Coupling to Gravity, arXiv:1204.4048 [INSPIRE].
  55. [55]
    B. Li, T.P. Sotiriou and J.D. Barrow, f (T) gravity and local Lorentz invariance, Phys. Rev. D 83 (2011) 064035 [arXiv:1010.1041] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Li, R.-X. Miao and Y.-G. Miao, Degrees of freedom of f (T) gravity, JHEP 07 (2011) 108 [arXiv:1105.5934] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    R.J. Yang, Conformal transformation in f (T) theories, Europhys. Lett. 93 (2011) 60001.ADSCrossRefGoogle Scholar
  58. [58]
    T.P. Sotiriou, B. Li and J.D. Barrow, Generalizations of teleparallel gravity and local Lorentz symmetry, Phys. Rev. D 83 (2011) 104030 [arXiv:1012.4039] [INSPIRE].ADSGoogle Scholar
  59. [59]
    B. Li, T.P. Sotiriou and J.D. Barrow, Large-scale Structure in f (T) Gravity, Phys. Rev. D 83 (2011) 104017 [arXiv:1103.2786] [INSPIRE].ADSGoogle Scholar
  60. [60]
    R. Aldrovandi and J.G. Pereira, An Introduction to Teleparallel Gravity, Instituto de Fisica Teorica, UNSEP, Sao Paulo [].
  61. [61]
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons, New York, U.S.A. (1972).Google Scholar
  62. [62]
    S.-H. Chen, J.B. Dent, S. Dutta and E.N. Saridakis, Cosmological perturbations in f (T) gravity, Phys. Rev. D 83 (2011) 023508 [arXiv:1008.1250] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.B. Dent, S. Dutta and E.N. Saridakis, f (T) gravity mimicking dynamical dark energy. Background and perturbation analysis, JCAP 01 (2011) 009 [arXiv:1010.2215] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.-c. Hwang and H.-r. Noh, Gauge ready formulation of the cosmological kinetic theory in generalized gravity theories, Phys. Rev. D 65 (2002) 023512 [astro-ph/0102005] [INSPIRE].ADSGoogle Scholar
  65. [65]
    S. Tsujikawa, Matter density perturbations and effective gravitational constant in modified gravity models of dark energy, Phys. Rev. D 76 (2007) 023514 [arXiv:0705.1032] [INSPIRE].MathSciNetADSGoogle Scholar
  66. [66]
    S. Tsujikawa, K. Uddin and R. Tavakol, Density perturbations in f (R) gravity theories in metric and Palatini formalisms, Phys. Rev. D 77 (2008) 043007 [arXiv:0712.0082] [INSPIRE].MathSciNetADSGoogle Scholar
  67. [67]
    A.D. Felice and S. Tsujikawa, f (R) Theories, Living Rev. Relativ. 13 (2010) 3 [].
  68. [68]
    R. Zheng and Q.-G. Huang, Growth factor in f (T) gravity, JCAP 03 (2011) 002 [arXiv:1010.3512] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    X. Fu, P. Wu and H. Yu, The growth of matter perturbations in f (T) gravity, Int. J. Mod. Phys. D 20 (2011) 1301 [arXiv:1204.2333] [INSPIRE].ADSGoogle Scholar
  70. [70]
    L. Amendola and S. Tsujikawa, Dark Energy - Theory and Observations, Cambridge University Press, Cambridge, U.K. (2010).MATHGoogle Scholar
  71. [71]
    E.V. Linder and R.N. Cahn, Parameterized Beyond-Einstein Growth, Astropart. Phys. 28 (2007) 481 [astro-ph/0701317] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G.R. Bengochea and R. Ferraro, Dark torsion as the cosmic speed-up, Phys. Rev. D 79 (2009) 124019 [arXiv:0812.1205] [INSPIRE].ADSGoogle Scholar
  73. [73]
    E.V. Linder, Einsteins Other Gravity and the Acceleration of the Universe, Phys. Rev. D 81 (2010) 127301 [Erratum ibid. D 82 (2010) 109902] [arXiv:1005.3039] [INSPIRE].ADSGoogle Scholar
  74. [74]
    E.V. Linder, Cosmic growth history and expansion history, Phys. Rev. D 72 (2005) 043529 [astro-ph/0507263] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsNational Tsing Hua UniversityHsinchu, 300Taiwan
  2. 2.Physics Division, National Center for Theoretical SciencesHsinchu, 300Taiwan
  3. 3.College of Mathematics & PhysicsChongqing University of Posts & TelecommunicationsChongqingChina

Personalised recommendations