Advertisement

Journal of High Energy Physics

, 2012:115 | Cite as

The TeV dawn of SUSY models — Consequences for flavour and CP

  • Joerg Jaeckel
  • Valentin V. Khoze
Article

Abstract

Direct searches and the hints for the Higgs at ~ 125 GeV put increasing pressure on simple models of SUSY breaking, in particular (but not exclusively) on those that automatically solve the flavour problem, such as gauge mediation. SUSY-breaking parameters are pushed to higher and higher values, increasing the fine-tuning required to achieve electroweak symmetry breaking at the observed scale. In this note we consider the situation for models which do not attempt to solve the flavour problem. To treat them on equal footing, we consider the combined fine-tuning arising from electroweak symmetry breaking as well as from fulfilling flavour constraints. We also consider CP. We find that for an anarchic flavour (and CP) structure of the soft SUSY breaking terms, the minimum in the fine-tuning occurs at a scale of a few TeV. This is consistent with the current experimental situation and leads to motivating conclusions for direct searches as well as future flavour and CP measurements.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7\;TeV \) proton-proton collisions, ATLAS-CONF-2012-033 (2012).Google Scholar
  3. [3]
    ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in L = 4.7 fb −1 of \( \sqrt{s}=7\;TeV \) proton-proton collisions, ATLAS-CONF-2012-037 (2012).Google Scholar
  4. [4]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    CMS collaboration, Search for supersymmetry in hadronic final states using M T 2 with the CMS detector at 7 TeV, PAS-SUS-12-002 (2012).Google Scholar
  6. [6]
    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  8. [8]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    G. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    D. Grellscheid, J. Jaeckel, V.V. Khoze, P. Richardson and C. Wymant, Direct SUSY Searches at the LHC in the light of LEP Higgs Bounds, JHEP 03 (2012) 078 [arXiv:1111.3365] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  12. [12]
    V.V. Khoze, What do we expect form SUSY, talk at Planck 2012 , May 28-June 1, Warsaw, Poland (2012).Google Scholar
  13. [13]
    J.L. Feng, Z. Surujon and H.-B. Yu, Confluence of constraints in gauge mediation: the 125 GeV Higgs boson and Goldilocks cosmology, Phys. Rev. D 86 (2012) 035003 [arXiv:1205.6480] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Okada, SuperWIMP dark matter and 125 GeV Higgs boson in the minimal GMSB, arXiv:1205.5826 [INSPIRE].
  15. [15]
    S.P. Martin, A supersymmetry primer, in Perspectives on supersymmetry II, G.L. Kane ed., World Scientific, Singapore (2010), hep-ph/9709356 [INSPIRE].
  16. [16]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e +γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    P. Ciafaloni and A. Strumia, Naturalness upper bounds on gauge mediated soft terms, Nucl. Phys. B 494 (1997) 41 [hep-ph/9611204] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Phenomenology of pure general gauge mediation, JHEP 12 (2009) 001 [arXiv:0910.2674] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Abel, M.J. Dolan, J. Jaeckel and V.V. Khoze, Pure general gauge mediation for early LHC searches, JHEP 12 (2010) 049 [arXiv:1009.1164] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].ADSGoogle Scholar
  24. [24]
    S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].ADSGoogle Scholar
  25. [25]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s}=7\;TeV \) proton-proton collision data, arXiv:1208.0949 [INSPIRE].
  26. [26]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s}=7\;TeV \), JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, The messenger sector of SUSY flavour models and radiative breaking of flavour universality, JHEP 06 (2012) 018 [arXiv:1203.1489] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Ciuchini et al., ΔM (K) and ϵ(K) in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Abel and O. Lebedev, Neutron-electron EDM correlations in supersymmetry and prospects for EDM searches, JHEP 01 (2006) 133 [hep-ph/0508135] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J.J. Hudson et al., Improved measurement of the shape of the electron, Nature 473 (2011) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W.C. Griffith et al., Improved limit on the permanent electric dipole moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    D. Chang, W.-Y. Keung and A. Pilaftsis, New two loop contribution to electric dipole moment in supersymmetric theories, Phys. Rev. Lett. 82 (1999) 900 [Erratum ibid. 83 (1999) 3972] [hep-ph/9811202] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.R. Ellis and K.A. Olive, How finely tuned is supersymmetric dark matter?, Phys. Lett. B 514 (2001) 114 [hep-ph/0105004] [INSPIRE].ADSGoogle Scholar
  37. [37]
    S.F. King and J.P. Roberts, Natural implementation of neutralino dark matter, JHEP 09 (2006) 036 [hep-ph/0603095] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S.F. King and J.P. Roberts, Natural dark matter, Acta Phys. Polon. B 38 (2007) 607 [hep-ph/0609147] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K

Personalised recommendations