Journal of High Energy Physics

, 2012:102 | Cite as

Further evidence for lattice-induced scaling

  • Gary T. Horowitz
  • Jorge E. Santos
  • David Tong


We continue our study of holographic transport in the presence of a background lattice. We recently found evidence that the presence of a lattice induces a new intermediate scaling regime in asymptotically AdS 4 spacetimes. This manifests itself in the optical conductivity which exhibits a robust power-law dependence on frequency, σω −2/3, in a “mid-infrared” regime, a result which is in striking agreement with experiments on the cuprates. Here we provide further evidence for the existence of this intermediate scaling regime. We demonstrate similar scaling in the thermoelectric conductivity, find analogous scalings in asymptotically AdS 5 spacetimes, and show that we get the same results with an ionic lattice.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    G.T. Horowitz, J.E. Santos and D. Tong, Optical conductivity with holographic lattices, JHEP 07 (2012) 168 [arXiv:1204.0519] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    S.A. Hartnoll and D.M. Hofman, Locally critical resistivities from umklapp scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Maeda, T. Okamura and J.-I. Koga, Inhomogeneous charged black hole solutions in asymptotically anti-de Sitter spacetime, Phys. Rev. D 85 (2012) 066003 [arXiv:1107.3677] [INSPIRE].ADSGoogle Scholar
  4. [4]
    N. Iizuka and K. Maeda, Towards the lattice effects on the holographic superconductor, arXiv:1207.2943 [INSPIRE].
  5. [5]
    Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality, JHEP 10 (2012) 036 [arXiv:1205.5227] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Donos and S.A. Hartnoll, Universal linear in temperature resistivity from black hole superradiance, arXiv:1208.4102 [INSPIRE].
  7. [7]
    S. Kachru, A. Karch and S. Yaida, Holographic lattices, dimers and glasses, Phys. Rev. D 81 (2010) 026007 [arXiv:0909.2639] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    S. Kachru, A. Karch and S. Yaida, Adventures in holographic dimer models, New J. Phys. 13 (2011) 035004 [arXiv:1009.3268] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Jensen, S. Kachru, A. Karch, J. Polchinski and E. Silverstein, Towards a holographic marginal Fermi liquid, Phys. Rev. D 84 (2011) 126002 [arXiv:1105.1772] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S. Bolognesi and D. Tong, Monopoles and holography, JHEP 01 (2011) 153 [arXiv:1010.4178] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Donos and J.P. Gauntlett, Helical superconducting black holes, Phys. Rev. Lett. 108 (2012) 211601 [arXiv:1203.0533] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    D. van der Marel et al., Quantum critical behaviour in a high T c superconductor, Nature 425 (2003) 271 [arXiv:cond-mat/0309172].ADSCrossRefGoogle Scholar
  18. [18]
    D. van der Marel, F. Carbone, A.B. Kuzmenko and E. Giannini, Scaling properties of the optical conductivity of Bi-based cuprates, Annals Phys. 321 (2006) 1716 [cond-mat/0604037].ADSCrossRefGoogle Scholar
  19. [19]
    A. El Azrak et al., Infrared properties of YBa 2 Cu 3 O 7 and Bi 2 Sr 2 Ca n−1 Cu n O 2n+4 thin films, Phys. Rev. B 49 (1994) 9846.ADSGoogle Scholar
  20. [20]
    P.W. Anderson, Infrared conductivity of cuprate metals: detailed fit using luttinger liquid theory, Phys. Rev. B 55 (1997) 11785 [cond-mat/9506140].ADSGoogle Scholar
  21. [21]
    T. Kato and M. Imada, Thermodynamics and optical conductivity of a dissipative carrier in a tight binding model, J. Phys. Soc. Japan 67 (1998) 2828 [cond-mat/9711208].ADSCrossRefGoogle Scholar
  22. [22]
    M.R. Norman and A.V. Chubukov, High-frequency behavior of the infrared conductivity of cuprates, Phys. Rev. B 73 (2006) 140501 [cond-mat/0511584].ADSGoogle Scholar
  23. [23]
    M. Headrick, S. Kitchen and T. Wiseman, A new approach to static numerical relativity and its application to Kaluza-Klein black holes, Class. Quant. Grav. 27 (2010) 035002 [arXiv:0905.1822] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  25. [25]
    V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  26. [26]
    S.A. Hartnoll and C.P. Herzog, Ohms law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    M. Taylor, More on counterterms in the gravitational action and anomalies, hep-th/0002125 [INSPIRE].
  28. [28]
    G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Flauger, E. Pajer and S. Papanikolaou, A striped holographic superconductor, Phys. Rev. D 83 (2011) 064009 [arXiv:1010.1775] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.A. Hutasoit, G. Siopsis and J. Therrien, Conductivity of strongly coupled striped superconductor, arXiv:1208.2964 [INSPIRE].
  31. [31]
    K. Takenaka et al., Coherent-to-incoherent crossover in the optical conductivity of La 2−x Sr x CuO 4 : Charge dynamics of a bad metal, Phys. Rev. B 65 (2002) 092405.ADSGoogle Scholar
  32. [32]
    E. Berti, V. Cardoso and P. Pani, Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes, Phys. Rev. D 79 (2009) 101501 [arXiv:0903.5311] [INSPIRE].MathSciNetADSGoogle Scholar
  33. [33]
    C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • Gary T. Horowitz
    • 1
  • Jorge E. Santos
    • 1
  • David Tong
    • 2
  1. 1.Department of PhysicsUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.DAMTPUniversity of CambridgeCambridgeUK

Personalised recommendations