Journal of High Energy Physics

, 2012:92 | Cite as

A simple grand unified relation between neutrino mixing and quark mixing



It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in \( 5+\bar{5} \) multiplets of SU(5). This simple assumption implies that both V CKM and U M N S are generated by a single matrix. The entire 3 × 3 complex mass matrix of the neutrinos M v is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for θ atm ≲ 40°. The leptonic Dirac CP phase is found to be somewhat greater than π.


Neutrino Physics GUT CP violation Beyond Standard Model 


  1. [1]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSMATHCrossRefGoogle Scholar
  2. [2]
    N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    K. Babu and S.M. Barr, Large neutrino mixing angles in unified theories, Phys. Lett. B 381 (1996) 202 [hep-ph/9511446] [INSPIRE].ADSGoogle Scholar
  5. [5]
    C.H. Albright and S.M. Barr, Fermion masses in SO(10) with a single adjoint Higgs field, Phys. Rev. D 58 (1998) 013002 [hep-ph/9712488] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Sato and T. Yanagida, Large lepton mixing in a coset space family unification on E 7 /SU(5) × U(1)3, Phys. Lett. B 430 (1998) 127 [hep-ph/9710516] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C.H. Albright, K. Babu and S.M. Barr, A minimality condition and atmospheric neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1167 [hep-ph/9802314] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [INSPIRE].ADSGoogle Scholar
  9. [9]
    K.S. Babu, J.C. Pati and F. Wilczek, Fermion masses, neutrino oscillations, and proton decay in the light of Super-Kamiokande, Nucl. Phys. B 566 (2000) 33 [hep-ph/9812538] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    J. Sato and T. Yanagida, Low-energy predictions of lopsided family charges, Phys. Lett. B 493 (2000) 356 [hep-ph/0009205] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Asaka, Lopsided mass matrices and leptogenesis in SO(10) GUT, Phys. Lett. B 562 (2003) 291 [hep-ph/0304124] [INSPIRE].ADSGoogle Scholar
  12. [12]
    X.-d. Ji, Y.-c. Li and R. Mohapatra, An SO(10) GUT model with lopsided mass matrix and neutrino mixing angle θ13, Phys. Lett. B 633 (2006) 755 [hep-ph/0510353] [INSPIRE].ADSGoogle Scholar
  13. [13]
    H. Georgi, Towards a grand unified theory of flavor, Nucl. Phys. B 156 (1979) 126 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    S.M. Barr, Light fermion mass hierarchy and grand unification, Phys. Rev. D 21 (1980) 1424 [INSPIRE].ADSGoogle Scholar
  15. [15]
    A.E. Nelson, Naturally weak CP-violation, Phys. Lett. B 136 (1984) 387 [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.M. Barr, A natural class of non-Peccei-Quinn models, Phys. Rev. D 30 (1984) 1805 [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    S.M. Barr, Solving the strong CP problem without the Peccei-Quinn symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K. Babu, J.C. Pati and H. Stremnitzer, Fermion masses and CP-violation in a model with scale unification, Phys. Rev. Lett. 67 (1991) 1688 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K. Babu and J.C. Pati, The problems of unification mismatch and low α3 : a solution with light vector-like matter, Phys. Lett. B 384 (1996) 140 [hep-ph/9606215] [INSPIRE].ADSGoogle Scholar
  20. [20]
    K. Kannike, M. Raidal, D.M. Straub and A. Strumia, Anthropic solution to the magnetic muon anomaly: the charged see-saw, JHEP 02 (2012) 106 [Erratum ibid. 1210 (2012) 136] [arXiv:1111.2551] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Dermisek, Insensitive unification of gauge couplings, Phys. Lett. B 713 (2012) 469 [arXiv:1204.6533] [INSPIRE].ADSGoogle Scholar
  22. [22]
    H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Weinberg, Baryon- and lepton-nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566.ADSCrossRefGoogle Scholar
  24. [24]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  25. [25]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  26. [26]
    Z.-z. Xing, H. Zhang and S. Zhou, Updated values of running quark and lepton masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and The Bartol Research InstituteUniversity of DelawareNewarkU.S.A

Personalised recommendations