Journal of High Energy Physics

, 2012:89 | Cite as

Spinor helicity structures in higher spin theories



It is shown that the coefficient of the cubic interaction vertex, in higher spin Lagrangians, has a very simple form when written in terms of spinor helicity products. The result for a higher-spin field, of spin λ, is equal to the corresponding Yang-Mills coefficient raised to the power λ. Among other things, this suggests perturbative ties, similar to the KLT relations, between higher spin theories and pure Yang-Mills. This result is obtained in four-dimensional flat spacetime.


Scattering Amplitudes Gauge Symmetry Space-Time Symmetries 


  1. [1]
    A.K. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrary spin, Nucl. Phys. B 227 (1983) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields, Nucl. Phys. B 859 (2012) 13 [arXiv:0712.3526] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    R. Metsaev, Cubic interaction vertices for higher spin fields, hep-th/9705048 [INSPIRE].
  4. [4]
    S.J. Parke and T. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359 [INSPIRE].
  10. [10]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    A. Sagnotti, Notes on strings and higher spins, arXiv:1112.4285 [INSPIRE].
  12. [12]
    A. Sagnotti and M. Taronna, String lessons for higher-spin interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    P. Dempster and M. Tsulaia, On the structure of quartic vertices for massless higher spin fields on Minkowski background, Nucl. Phys. B 865 (2012) 353 [arXiv:1203.5597] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Tsulaia, On tensorial spaces and BCFW recursion relations for higher spin fields, Int. J. Mod. Phys. A 27 (2012) 1230011 [arXiv:1202.6309] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    A. Fotopoulos and M. Tsulaia, On the tensionless limit of string theory, off-shell higher spin interaction vertices and BCFW recursion relations, JHEP 11 (2010) 086 [arXiv:1009.0727] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1.MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Gorsky and A. Rosly, From Yang-Mills lagrangian to MHV diagrams, JHEP 01 (2006) 101 [hep-th/0510111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    P. Mansfield, The lagrangian origin of MHV rules, JHEP 03 (2006) 037 [hep-th/0511264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Ananth and S. Theisen, KLT relations from the Einstein-Hilbert lagrangian, Phys. Lett. B 652 (2007) 128 [arXiv:0706.1778] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    A.K. Bengtsson, I. Bengtsson and N. Linden, Interacting higher spin gauge fields on the light front, Class. Quant. Grav. 4 (1987) 1333 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    E. Fradkin and R. Metsaev, A cubic interaction of totally symmetric massless representations of the Lorentz group in arbitrary dimensions, Class. Quant. Grav. 8 (1991) L89 [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    R. Metsaev, Poincaré invariant dynamics of massless higher spins: Fourth order analysis on mass shell, Mod. Phys. Lett. A 6 (1991) 359 [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any dimension, Mod. Phys. Lett. A 8 (1993) 2413 [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    X. Bekaert, N. Boulanger and S. Cnockaert, Spin three gauge theory revisited, JHEP 01 (2006) 052 [hep-th/0508048] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    P. Benincasa and E. Conde, On the tree-level structure of scattering amplitudes of massless particles, JHEP 11 (2011) 074 [arXiv:1106.0166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Benincasa and E. Conde, Exploring the S-matrix of massless particles, Phys. Rev. D 86 (2012) 025007 [arXiv:1108.3078] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Z. Bern, L.J. Dixon, D. Dunbar, M. Perelstein and J. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].ADSGoogle Scholar
  32. [32]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S. Ananth, Gravity and Yang-Mills theory, Int. J. Mod. Phys. D 19 (2010) 2379 [arXiv:1011.3287] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchPuneIndia

Personalised recommendations