Journal of High Energy Physics

, 2012:79 | Cite as

Moduli stabilization in type II Calabi-Yau compactifications at finite temperature

Open Access


We consider the type II superstring compactified on Calabi-Yau threefolds, at finite temperature. The latter is implemented at the string level by a free action on the Euclidean time circle. We show that all Kähler and complex structure moduli involved in the gauge theories geometrically engineered in the vicinity of singular loci are lifted by the stringy thermal effective potential. The analysis is based on the effective gauged super-gravity at low energy, without integrating out the non-perturbative BPS states becoming massless at the singular loci. The universal form of the action in the weak coupling regime and at low enough temperature is determined in two cases. Namely, the conifold locus, as well as a locus where the internal space develops a genus-g curve of A N −1 singularities, thus realizing an SU(N ) gauge theory coupled to g hypermultiplets in the adjoint. In general, we argue that the favored points of stabilization sit at the intersection of several such loci. As a result, the entire vector multiplet moduli space is expected to be lifted, together with hypermultiplet moduli. The scalars are dynamically stabilized during the cosmological evolution induced by the back-reaction of the thermal effective potential on the originally static background. When the universe expands and the temperature T drops, the scalars converge to minima, with damped oscillations. Moreover, they store an energy density that scales as T 4, which never dominates over radiation. The reason for this is that the mass they acquire at one-loop is of order the temperature scale, which is time-dependent rather than constant. As an example, we analyze the type IIA compactification on a hy-persurface \( \mathbb{P}_{{\left( {1,1,2,2,6} \right)}}^4 \) [12], with Hodge numbers h 11 = 2 and h 12 = 128. In this case, both Kähler moduli are stabilized at a point, where the internal space develops a node and an enhanced SU(2) gauge theory coupled to 2 adjoint hypermultiplets. This shows that in the dual thermal heterotic picture on K3 × T 2, the torus modulus and the axio-dilaton are stabilized, though in a strong coupling heterotic regime.


String Duality D-branes 


  1. [1]
    E. Adelberger, B.R. Heckel and A. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Brandle and A. Lukas, Flop transitions in M-theory cosmology, Phys. Rev. D 68 (2003) 024030 [hep-th/0212263] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    L. Jarv, T. Mohaupt and F. Saueressig, Effective supergravity actions for flop transitions, JHEP 12 (2003) 047 [hep-th/0310173] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    L. Jarv, T. Mohaupt and F. Saueressig, M theory cosmologies from singular Calabi-Yau compactifications, JCAP 02 (2004) 012 [hep-th/0310174] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    T. Mohaupt and F. Saueressig, Effective supergravity actions for conifold transitions, JHEP 03 (2005) 018 [hep-th/0410272] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    T. Mohaupt and F. Saueressig, Dynamical conifold transitions and moduli trapping in M-theory cosmology, JCAP 01 (2005) 006 [hep-th/0410273] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Lukas, E. Palti and P. Saffin, Type IIB conifold transitions in cosmology, Phys. Rev. D 71 (2005) 066001 [hep-th/0411033] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    E. Palti, Aspects of moduli stabilisation in string and M-theory, hep-th/0608033 [INSPIRE].
  9. [9]
    L. Kofman et al., Beauty is attractive: moduli trapping at enhanced symmetry points, JHEP 05 (2004) 030 [hep-th/0403001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S. Watson, Moduli stabilization with the string Higgs effect, Phys. Rev. D 70 (2004) 066005 [hep-th/0404177] [INSPIRE].ADSGoogle Scholar
  11. [11]
    P.H. Ginsparg and C. Vafa, Toroidal compactification of nonsupersymmetric heterotic strings, Nucl. Phys. B 289 (1987) 414 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    V. Nair, A.D. Shapere, A. Strominger and F. Wilczek, Compactification of the twisted heterotic string, Nucl. Phys. B 287 (1987) 402 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, Naturally vanishing cosmological constant in N = 1 supergravity, Phys. Lett. B 133 (1983) 61 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    J.R. Ellis, C. Kounnas and D.V. Nanopoulos, No scale supersymmetric guts, Nucl. Phys. B 247 (1984) 373 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.R. Ellis, C. Kounnas and D.V. Nanopoulos, Phenomenological SU(1, 1) supergravity, Nucl. Phys. B 241 (1984) 406 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.R. Ellis, A. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-scale supersymmetric standard model, Phys. Lett. B 134 (1984) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Scherk and J.H. Schwarz, Spontaneous breaking of supersymmetry through dimensional reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Rohm, Spontaneous supersymmetry breaking in supersymmetric string theories, Nucl. Phys. B 237 (1984) 553 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Kounnas and M. Porrati, Spontaneous supersymmetry breaking in string theory, Nucl. Phys. B 310 (1988) 355 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Ferrara, C. Kounnas and M. Porrati, N = 1 superstrings with spontaneously broken symmetries, Phys. Lett. B 206 (1988) 25 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Effective superhiggs and StrM 2 from four-dimensional strings, Phys. Lett. B 194 (1987) 366 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S. Ferrara, C. Kounnas and M. Porrati, Superstring solutions with spontaneously broken four-dimensional supersymmetry, Nucl. Phys. B 304 (1988) 500 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    C. Kounnas and B. Rostand, Coordinate dependent compactifications and discrete symmetries, Nucl. Phys. B 341 (1990) 641 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S.P. Patil and R. Brandenberger, Radion stabilization by stringy effects in general relativity, Phys. Rev. D 71 (2005) 103522 [hep-th/0401037] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Watson and R. Brandenberger, Stabilization of extra dimensions at tree level, JCAP 11 (2003) 008 [hep-th/0307044] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Battefeld and S. Watson, String gas cosmology, Rev. Mod. Phys. 78 (2006) 435 [hep-th/0510022] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  27. [27]
    R.J. Danos, A.R. Frey and R.H. Brandenberger, Stabilizing moduli with thermal matter and nonperturbative effects, Phys. Rev. D 77 (2008) 126009 [arXiv:0802.1557] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R.H. Brandenberger and C. Vafa, Superstrings in the early universe, Nucl. Phys. B 316 (1989) 391 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J.E. Lidsey, D. Wands and E.J. Copeland, Superstring cosmology, Phys. Rept. 337 (2000) 343 [hep-th/9909061] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R.H. Brandenberger, String gas cosmology, arXiv:0808.0746 [INSPIRE].
  31. [31]
    J. Estes, L. Liu and H. Partouche, Massless D-strings and moduli stabilization in type-I cosmology, JHEP 06 (2011) 060 [arXiv:1102.5001] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    S.H. Katz, D.R. Morrison and M.R. Plesser, Enhanced gauge symmetry in type-II string theory, Nucl. Phys. B 477 (1996) 105 [hep-th/9601108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    A. Klemm and P. Mayr, Strong coupling singularities and non-Abelian gauge symmetries in N =2 string theory, Nucl. Phys. B 469 (1996) 37 [hep-th/9601014] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    P. Berglund, S.H. Katz, A. Klemm and P. Mayr, New Higgs transitions between dual N = 2 string models, Nucl. Phys. B 483 (1997) 209 [hep-th/9605154] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the unification of string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    P. Candelas, P.S. Green and T. Hubsch, Rolling among Calabi-Yau vacua, Nucl. Phys. B 330 (1990) 49 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477-478] [hep-th/9906070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    J. Estes, C. Kounnas and H. Partouche, Superstring cosmology for N 4 = 1 → 0 superstring vacua, Fortsch. Phys. 59 (2011) 861 [arXiv:1003.0471] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  44. [44]
    F. Bourliot, J. Estes, C. Kounnas and H. Partouche, Cosmological phases of the string thermal effective potential, Nucl. Phys. B 830 (2010) 330 [arXiv:0908.1881] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Catelin-Jullien, C. Kounnas, H. Partouche and N. Toumbas, Thermal/quantum effects and induced superstring cosmologies, Nucl. Phys. B 797 (2008) 137 [arXiv:0710.3895] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    T. Catelin-Jullien, C. Kounnas, H. Partouche and N. Toumbas, Induced superstring cosmologies and moduli stabilization, Nucl. Phys. B 820 (2009) 290 [arXiv:0901.0259] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    F. Bourliot, C. Kounnas and H. Partouche, Attraction to a radiation-like era in early superstring cosmologies, Nucl. Phys. B 816 (2009) 227 [arXiv:0902.1892] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    C. Kounnas and H. Partouche, Inflationary de Sitter solutions from superstrings, Nucl. Phys. B 795 (2008) 334 [arXiv:0706.0728] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    S. Ferrara, C. Kounnas and F. Zwirner, Mass formulae and natural hierarchy in string effective supergravities, Nucl. Phys. B 429 (1994) 589 [Erratum ibid. B 433 (1995) 255] [hep-th/9405188] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    T. Banks, M. Berkooz and P. Steinhardt, The cosmological moduli problem, supersymmetry breaking and stability in postinflationary cosmology, Phys. Rev. D 52 (1995) 705 [hep-th/9501053] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    B. de Carlos, J. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    G. Coughlan, R. Holman, P. Ramond and G.G. Ross, Supersymmetry and the entropy crisis, Phys. Lett. B 140 (1984) 44 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    C. Kounnas, I. Paval, G. Ridolfi and F. Zwirner, Possible dynamical determination of m t , m b and m τ , Phys. Lett. B 354 (1995) 322 [hep-ph/9502318] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal low-energy supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    L.E. Ibáñez and G.G. Ross, SU(2)L × U(1) symmetry breaking as a radiative effect of supersymmetry breaking in guts, Phys. Lett. B 110 (1982) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    L. Álvarez-Gaumé, M. Claudson and M.B. Wise, Low-energy supersymmetry, Nucl. Phys. B 207 (1982) 96 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.R. Ellis, D.V. Nanopoulos and K. Tamvakis, Grand unification in simple supergravity, Phys. Lett. B 121 (1983) 123 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Kounnas, A. Lahanas, D.V. Nanopoulos and M. Quirós, Supergravity induced radiative SU(2) × U(1) breaking with light top quark and stable minimum, Phys. Lett. B 132 (1982) 95 [INSPIRE].ADSGoogle Scholar
  59. [59]
    C. Kounnas, A. Lahanas, D.V. Nanopoulos and M. Quirós, Low-energy behavior of realistic locally supersymmetric grand unified theories, Nucl. Phys. B 236 (1984) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    C. Kounnas, F. Zwirner and I. Pavel, Towards a dynamical determination of parameters in the minimal supersymmetric standard model, Phys. Lett. B 335 (1994) 403 [hep-ph/9406256] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Klemm, W. Lerche and P. Mayr, K3 fibrations and heterotic type-II string duality, Phys. Lett. B 357 (1995) 313 [hep-th/9506112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl. Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nonperturbative results on the point particle limit of N = 2 heterotic string compactifications, Nucl. Phys. B 459 (1996) 537 [hep-th/9508155] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    I. Antoniadis and H. Partouche, Exact monodromy group of N = 2 heterotic superstring, Nucl. Phys. B 460 (1996) 470 [hep-th/9509009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  66. [66]
    A. Ceresole, R. D’Auria, S. Ferrara and A. Van Proeyen, Duality transformations in supersymmetric Yang-Mills theories coupled to supergravity, Nucl. Phys. B 444 (1995) 92 [hep-th/9502072] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    P. Fayet, Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories, Nucl. Phys. B 149 (1979) 137 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    P.S. Aspinwall, Enhanced gauge symmetries and K3 surfaces, Phys. Lett. B 357 (1995) 329 [hep-th/9507012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter models. 1., Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE]. ADSCrossRefGoogle Scholar
  70. [70]
    S. Hosono, A. Klemm, S. Theisen and S.-T. Yau, Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Commun. Math. Phys. 167 (1995) 301 [hep-th/9308122] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  71. [71]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485-486] [hep-th/9407087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  72. [72]
    C. Vafa and E. Witten, Dual string pairs with N = 1 and N = 2 supersymmetry in four-dimensions, Nucl. Phys. Proc. Suppl. 46 (1996) 225 [hep-th/9507050] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  73. [73]
    I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T. Taylor, Aspects of type-I-type-II-heterotic triality in four-dimensions, Nucl. Phys. B 489 (1997) 160 [hep-th/9608012] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    I. Antoniadis, H. Partouche and T. Taylor, Duality of N = 2 heterotic type-I compactifications in four-dimensions, Nucl. Phys. B 499 (1997) 29 [hep-th/9703076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  75. [75]
    C. Angelantonj, C. Kounnas, H. Partouche and N. Toumbas, Resolution of hagedorn singularity in superstrings with gravito-magnetic fluxes, Nucl. Phys. B 809 (2009) 291 [arXiv:0808.1357] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  76. [76]
    I. Florakis, C. Kounnas and N. Toumbas, Marginal deformations of vacua with massive boson-fermion degeneracy symmetry, Nucl. Phys. B 834 (2010) 273 [arXiv:1002.2427] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    C. Kounnas, H. Partouche and N. Toumbas, Thermal duality and non-singular cosmology in d-dimensional superstrings, Nucl. Phys. B 855 (2012) 280 [arXiv:1106.0946] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  78. [78]
    I. Florakis, C. Kounnas, H. Partouche and N. Toumbas, Non-singular string cosmology in a 2D hybrid model, Nucl. Phys. B 844 (2011) 89 [arXiv:1008.5129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    C. Kounnas, H. Partouche and N. Toumbas, S-brane to thermal non-singular string cosmology, Class. Quant. Grav. 29 (2012) 095014 [arXiv:1111.5816] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Centre de Physique Théorique, Ecole PolytechniquePalaiseau cedexFrance

Personalised recommendations