Advertisement

Journal of High Energy Physics

, 2012:69 | Cite as

Physics reach of CERN-based SuperBeam neutrino oscillation experiments

  • Pilar Coloma
  • Enrique Fernández-Martínez
  • Luis Labarga
Open Access
Article

Abstract

We compare the physics potential of two representative options for a Super-Beam in Europe, studying the achievable precision at 1σ with which the CP violation phase (δ) could be measured, as well as the mass hierarchy and CP violation discovery potentials. The first setup corresponds to a high energy beam aiming from CERN to a 100 kt liquid argon detector placed at the Pyhäsalmi mine (2300 km), one of the LAGUNA candidate sites. The second setup corresponds to a much lower energy beam, aiming from CERN to a 500 kt water Čerenkov detector placed at the Gran Sasso underground laboratory (730 km). This second option is also studied for a baseline of 650 km, corresponding to the LAGUNA candidate sites of Umbria and the Canfranc underground laboratory. All results are presented also for scenarios with statistics lowered by factors of 2, 4, 8 and 16 to study the possible reductions of flux, detector mass or running time allowed by the large value of θ 13 recently measured.

Keywords

Neutrino Physics CP violation 

References

  1. [1]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    RENO collaboration, J. Ahn et al., Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T2K collaboration, K. Abe et al., Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Double CHOOZ collaboration, M. Kuze, Latest News from Double CHOOZ Reactor Neutrino Experiment, AIP Conf. Proc. 1441 (2012) 461 [arXiv:1109.0074] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Gonzalez-Garcia, M. Maltoni and J. Salvado, Updated global fit to three neutrino mixing: status of the hints of theta13 ¿ 0, JHEP 04 (2010) 056 [arXiv:1001.4524] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 ¿0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Schwetz, M. Tortola and J. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  10. [10]
    G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  11. [11]
    LAGUNA collaboration, D. Angus et al., The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches, arXiv:1001.0077 [INSPIRE].
  12. [12]
  13. [13]
    CERN working group on Super Beams collaboration, J.J. Gomez-Cadenas et al., Physics potential of very intense conventional neutrino beams, hep-ph/0105297 [INSPIRE].
  14. [14]
    A. Donini, E. Fernandez-Martinez, P. Migliozzi, S. Rigolin and L. Scotto Lavina, Study of the eightfold degeneracy with a standard beta-beam and a super-beam facility, Nucl. Phys. B 710 (2005) 402 [hep-ph/0406132] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J.E. Campagne and A. Cazes, The θ 13 and δ CP sensitivities of the SPL-Frejus project revisited, Eur. Phys. J. C 45 (2006) 643 [hep-ex/0411062] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Donini, E. Fernandez-Martinez and S. Rigolin, Appearance and disappearance signals at a beta-beam and a super-beam facility, Phys. Lett. B 621 (2005) 276 [hep-ph/0411402] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Donini, E. Fernandez-Martinez, D. Meloni and S. Rigolin, ν μ disappearance at the SPL, T2K-I, NO nu A and the neutrino factory, Nucl. Phys. B 743 (2006) 41 [hep-ph/0512038] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.-E. Campagne, M. Maltoni, M. Mezzetto and T. Schwetz, Physics potential of the CERN-MEMPHYS neutrino oscillation project, JHEP 04 (2007) 003 [hep-ph/0603172] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Longhin, A new design for the CERN-Fréjus neutrino Super Beam, Eur. Phys. J. C 71 (2011) 1745 [arXiv:1106.1096] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Huber, M. Maltoni and T. Schwetz, Resolving parameter degeneracies in long-baseline experiments by atmospheric neutrino data, Phys. Rev. D 71 (2005) 053006 [hep-ph/0501037] [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Coloma and E. Fernandez-Martinez, Optimization of neutrino oscillation facilities for large θ 13, JHEP 04 (2012) 089 [arXiv:1110.4583] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. Rubbia, Expression of interest for a very long baseline neutrino oscillation experiment (LBNO), talk at the nuTURN meeting in Gran Sasso, (2012) http://agenda.infn.it/contributionDisplay.py?contribId=17&sessionId=5&confId=4722.
  23. [23]
    A. Longhin, Neutrino fluxes for the LAGUNA sites, (2010) http://irfu.cea.fr/en/Phocea/Pisp/index.php?id=72.
  24. [24]
    K. Abe et al., Letter of Intent: The Hyper-Kamiokande ExperimentDetector Design and Physics Potential, arXiv:1109.3262 [INSPIRE].
  25. [25]
    T2K collaboration, Y. Itow et al., The JHF-Kamioka neutrino project, hep-ex/0106019 [INSPIRE].
  26. [26]
    LBNE collaboration, T. Akiri et al., The 2010 Interim Report of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups, arXiv:1110.6249 [INSPIRE].
  27. [27]
    S.K. Agarwalla, T. Li and A. Rubbia, An Incremental approach to unravel the neutrino mass hierarchy and CP-violation with a long-baseline Superbeam for large θ 13, JHEP 05 (2012) 154 [arXiv:1109.6526] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Coloma, T. Li and S. Pascoli, Long Baseline Super-Beam Experiments in Europe within LAGUNA, arXiv:1110.1402 [INSPIRE].
  29. [29]
    L. Whitehead, private communication.Google Scholar
  30. [30]
    A. Donini, J. Gomez Cadenas and D. Meloni, The τ -contamination of the golden muon sample at the Neutrino Factory, JHEP 02 (2011) 095 [arXiv:1005.2275] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Indumathi and N. Sinha, Effect of tau neutrino contribution to muon signals at neutrino factories, Phys. Rev. D 80 (2009) 113012 [arXiv:0910.2020] [INSPIRE].ADSGoogle Scholar
  32. [32]
    R. Dutta, D. Indumathi and N. Sinha, Tau contamination in the platinum channel at neutrino factories, Phys. Rev. D 85 (2012) 013003 [arXiv:1103.5578] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Huber and J. Kopp, Two experiments for the price of one? - The role of the second oscillation maximum in long baseline neutrino experiments, JHEP 03 (2011) 013 [Erratum ibid. 1105 (2011) 024] [arXiv:1010.3706] [INSPIRE].
  34. [34]
    T. Schwetz, M. Tortola and J. Valle, Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters, New J. Phys. 13 (2011) 063004 [arXiv:1103.0734] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.M. Dziewonski and D.L. Anderson, Preliminary Reference Earth Model, Phys. Earth Planet. Int. 25 (1981) 297.ADSCrossRefGoogle Scholar
  36. [36]
    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Coloma, A. Donini, E. Fernandez-Martinez and P. Hernández, Precision on leptonic mixing parameters at future neutrino oscillation experiments, JHEP 06 (2012) 073 [arXiv:1203.5651] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    P. Coloma, T. Li and S. Pascoli, A Comparative Study of Long-Baseline Superbeams within LAGUNA for large θ 13, arXiv:1206.4038 [INSPIRE].

Copyright information

© SISSA 2012

Authors and Affiliations

  • Pilar Coloma
    • 1
  • Enrique Fernández-Martínez
    • 2
  • Luis Labarga
    • 3
  1. 1.Center for Neutrino Physics, Department of Physics, Virginia TechBlacksburgU.S.A.
  2. 2.CERN Physics Department, Theory DivisionGeneva 23Switzerland
  3. 3.Departamento de Física TeóricaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations