Journal of High Energy Physics

, 2012:40 | Cite as

Status of supersymmetric type-I seesaw in SO(10) inspired models

  • L. Calibbi
  • D. Chowdhury
  • A. Masiero
  • K. M. Patel
  • S. K. Vempati


We report on the status of supersymmetric seesaw models in the light of recent experimental results on μe + γ, θ 13 and the light Higgs mass at the LHC. SO(10)-like relations are assumed for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan β is still allowed. This remaining region can be ruled out by an order of magnitude improvement in the current limit on BR(μe + γ). We also explore a model with non-universal Higgs mass boundary conditions at the high scale. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations within the flavor violating terms. Such cancellations might relax the severe constraints imposed by lepton flavor violation compared to mSUGRA. Nevertheless for a large region of parameter space the predicted rates lie within the reach of future experiments once the light Higgs mass constraint is imposed. We also update the potential of the ongoing and future experimental searches for lepton flavor violation in constraining the supersymmetric parameter space.


Supersymmetry Phenomenology 


  1. [1]
    CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  2. [2]
    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  3. [3]
    P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, arXiv:1207.1347 [INSPIRE].
  4. [4]
    J. Ellis and T. You, Global analysis of the Higgs candidate with mass125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].
  6. [6]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, arXiv:1207.1718 [INSPIRE].
  7. [7]
    T. Corbett, O. Eboli, J. Gonzalez-Fraile and M. Gonzalez-Garcia, Constraining anomalous Higgs interactions, arXiv:1207.1344 [INSPIRE].
  8. [8]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, arXiv:1207.1716 [INSPIRE].
  9. [9]
    A. Parker, SUSY searches (ATLAS/CMS): the lady vanishes, (2012).
  10. [10]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and dark matter direct detection, Eur. Phys. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].ADSGoogle Scholar
  17. [17]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].ADSGoogle Scholar
  20. [20]
    H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].ADSGoogle Scholar
  21. [21]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis, et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    L. Calibbi, θ 13 and muon physics, NuFact 2012, (2012).
  27. [27]
    M. Hirsch, F. Joaquim and A. Vicente, Constrained SUSY seesaws with a 125 GeV Higgs, arXiv:1207.6635 [INSPIRE].
  28. [28]
    A. Masiero, S.K. Vempati and O. Vives, Seesaw and lepton flavor violation in SUSY SO(10), Nucl. Phys. B 649 (2003) 189 [hep-ph/0209303] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Calibbi, A. Faccia, A. Masiero and S. Vempati, Lepton flavour violation from SUSY-GUTs: where do we stand for MEG, PRISM/PRIME and a super flavour factory, Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139] [INSPIRE].ADSGoogle Scholar
  30. [30]
    L. Calibbi, R. Hodgkinson, J. Jones Perez, A. Masiero and O. Vives, Flavour and collider interplay for SUSY at LHC7, Eur. Phys. J. C 72 (2012) 1863 [arXiv:1111.0176] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Masiero, S.K. Vempati and O. Vives, Massive neutrinos and flavor violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Masiero, S. Vempati and O. Vives, Flavour physics and grand unification, arXiv:0711.2903 [INSPIRE].
  34. [34]
    F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Casas and A. Ibarra, Oscillating neutrinos and muone, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Hisano, T. Moroi, K. Tobe and M. Yamaguchi, Lepton flavor violation via right-handed neutrino Yukawa couplings in supersymmetric standard model, Phys. Rev. D 53 (1996) 2442 [hep-ph/9510309] [INSPIRE].ADSGoogle Scholar
  37. [37]
    E. Arganda, M. Herrero and A. Teixeira, μ-e conversion in nuclei within the CMSSM seesaw: universality versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    D. Chowdhury, R. Garani and S.K. Vempati, SUSEFLAV: program for supersymmetric mass spectra with seesaw mechanism and rare lepton flavor violating decays, arXiv:1109.3551 [INSPIRE].
  39. [39]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, pp and e + e reactions, hep-ph/0312045 [INSPIRE].
  40. [40]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the \( O\left( {\alpha_t^2} \right) \) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Dedes and P. Slavich, Two loop corrections to radiative electroweak symmetry breaking in the MSSM, Nucl. Phys. B 657 (2003) 333 [hep-ph/0212132] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM Higgs boson masses at large tan β, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  45. [45]
    LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
  47. [47]
    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    J. Hewett, H. Weerts, R. Brock, J. Butler, B. Casey, et al., Fundamental physics at the intensity frontier, arXiv:1205.2671 [INSPIRE].
  49. [49]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    SINDRUM II Collaboration. collaboration, C. Dohmen et al., Test of lepton flavor conservation in μe conversion on titanium, Phys. Lett. B 317 (1993) 631 [INSPIRE].ADSGoogle Scholar
  51. [51]
    D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, arXiv:1205.4018 [INSPIRE].
  52. [52]
    S. Antusch, J. Kersten, M. Lindner and M. Ratz, Running neutrino masses, mixings and CP phases: analytical results and phenomenological consequences, Nucl. Phys. B 674 (2003) 401 [hep-ph/0305273] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S. Antusch, E. Arganda, M. Herrero and A. Teixeira, Impact of θ 13 on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    L. Calibbi, A. Faccia, A. Masiero and S. Vempati, Running U(e3) and BR(μe + γ) in SUSY-GUTs, JHEP 07 (2007) 012 [hep-ph/0610241] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    G. Altarelli, F. Feruglio, L. Merlo and E. Stamou, Discrete flavour groups, θ 13 and lepton flavour violation, JHEP 08 (2012) 021 [arXiv:1205.4670] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Hisano, M. Nagai, P. Paradisi and Y. Shimizu, Waiting for μeγ from the MEG experiment, JHEP 12 (2009) 030 [arXiv:0904.2080] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].
  59. [59]
    Project X collaboration, Project X and the science of intensity frontier: a white paper, (2009).
  60. [60]
    A. Blondel et al., Letter of intent for an experiment to search for the decay μeee, (2011).
  61. [61]
    Y. Kuno, Muon to electron conversion experiment, Nucl. Phys. Proc. Suppl. 217 (2011) 337 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    Mu2e collaboration, The Mu2e conceptual design report 2012, (2012).
  63. [63]
    R. Barlow, The PRISM/PRIME project, Nucl. Phys. Proc. Suppl. 218 (2011) 44 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Aushev, W. Bartel, A. Bondar, J. Brodzicka, T. Browder, et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • L. Calibbi
    • 1
  • D. Chowdhury
    • 2
  • A. Masiero
    • 3
  • K. M. Patel
    • 4
  • S. K. Vempati
    • 2
  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  2. 2.Centre for High Energy Physics, Indian Institute of ScienceBangaloreIndia
  3. 3.INFN, Sezione di Padova and Dip. di. Fisica ‘Galileo Galilei’Univ. di. PadovaPadovaItaly
  4. 4.Physical Research LaboratoryAhmedabadIndia

Personalised recommendations