Advertisement

The sine-Gordon model with integrable defects revisited

  • Jean Avan
  • Anastasia Doikou
Open Access
Article

Abstract

Application of our algebraic approach to Liouville integrable defects is proposed for the sine-Gordon model. Integrability of the model is ensured by the underlying classical r-matrix algebra. The first local integrals of motion are identified together with the corresponding Lax pairs. Continuity conditions imposed on the time components of the entailed Lax pairs give rise to the sewing conditions on the defect point consistent with Liouville integrability.

Keywords

Integrable Hierarchies Integrable Field Theories 

References

  1. [1]
    Avan, Liouville integrable defects: the non-linear Schrödinger paradigm, JHEP 01 (2012) 040 [arXiv:1110.4728] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    G. Delfino, G. Mussardo and P. Simonetti, Statistical models with a line of defect, Phys. Lett. B 328 (1994) 123 [hep-th/9403049] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    G. Delfino, G. Mussardo and P. Simonetti, Scattering theory and correlation functions in statistical models with a line of defect, Nucl. Phys. B 432 (1994) 518 [hep-th/9409076] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    E. Corrigan and C. Zambon, A Transmission matrix for a fused pair of integrable defects in the sine-Gordon model, J. Phys. A 43 (2010) 345201 [arXiv:1006.0939] [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    R. Konik and A. LeClair, Purely transmitting defect field theories, Nucl. Phys. B 538 (1999) 587 [hep-th/9703085].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    P. Bowcock, E. Corrigan and C. Zambon, Some aspects of jump-defects in the quantum sine-Gordon model, JHEP 08 (2005) 023 [hep-th/0506169] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    F. Nemes, Semiclassical analysis of defect sine-Gordon theory, Int. J. Mod. Phys. A 25 (2010) 4493 [arXiv:0909.3268] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    E. Corrigan and C. Zambon, Comments on defects in the a r Toda field theories, J. Phys. A 42 (2009) 304008 [arXiv:0902.1307] [INSPIRE].MathSciNetGoogle Scholar
  9. [9]
    P. Bowcock, E. Corrigan and C. Zambon, Affine Toda field theories with defects, JHEP 01 (2004) 056 [hep-th/0401020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    E. Corrigan and C. Zambon, On purely transmitting defects in affine Toda field theory, JHEP 07 (2007) 001 [arXiv:0705.1066] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E. Corrigan and C. Zambon, A New class of integrable defects, J. Phys. A 42 (2009) 475203 [arXiv:0908.3126] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    E. Corrigan and C. Zambon, Jump-defects in the nonlinear Schrodinger model and other non-relativistic field theories, Nonlinearity 19 (2006) 1447 [nlin/0512038].MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    I. Habibullin and A. Kundu, Quantum and classical integrable sine-Gordon model with defect, Nucl. Phys. B 795 (2008) 549 [arXiv:0709.4611] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    V. Caudrelier, On a Systematic Approach to Defects in Classical Integrable Field Theories, Int. J. Geom. Methods M. 5 (2008) 1085 [arXiv:0704.2326].MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Z. Bajnok and A. George, From defects to boundaries, Int. J. Mod. Phys. A 21 (2006) 1063 [hep-th/0404199] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    Z. Bajnok, Equivalences between spin models induced by defects, J. Stat. Mech. 0606 (2006) P06010 [hep-th/0601107] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    Z. Bajnok and Z. Simon, Solving topological defects via fusion, Nucl. Phys. B 802 (2008) 307 [arXiv:0712.4292] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    R. Weston, An Algebraic Setting for Defects in the XXZ and sine-Gordon Models, arXiv:1006.1555 [INSPIRE].
  19. [19]
    M. Mintchev, É. Ragoucy and P. Sorba, Scattering in the presence of a reflecting and transmitting impurity, Phys. Lett. B 547 (2002) 313 [hep-th/0209052] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Mintchev, É. Ragoucy and P. Sorba, Reflection transmission algebras, J. Phys. A 36 (2003) 10407 [hep-th/0303187] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    V. Caudrelier, M. Mintchev and É. Ragoucy, The Quantum non-linear Schrödinger model with point-like defect, J. Phys. A 37 (2004) L367 [hep-th/0404144] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    Doikou, Defects in the discrete non-linear Schrödinger model, Nucl. Phys. B 854 (2012) 153 [arXiv:1106.1602] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    A. Aguirre, T. Araujo, J. Gomes and A. Zimerman, Type-II Bácklund Transformations via Gauge Transformations, JHEP 12 (2011) 056 [arXiv:1110.1589] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.R. Aguirre, Inverse scattering approach for massive Thirring models with integrable type-II defects, J. Phys. A 45 (2012) 205205 [arXiv:1111.5249] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    J.M. Maillet, New integrable canonical structures in two-dimensional models, Nucl. Phys. B 269 (1986) 54 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    F. Magri, P. Casati, G. Falqui and M. Pedroni, Eight Lectures on Integrable Systems, Lect. Notes Phys. 638 (2004) 209.ADSCrossRefGoogle Scholar
  27. [27]
    W. Oevel and O. Ragnisco, R-matrices and higher poisson brackets for integrable systems, Physica A 161 (1989) 181.MathSciNetADSGoogle Scholar
  28. [28]
    J. Avan and E. Ragoucy, Rational Calogero-Moser model: explicit form and R-matrix of the second Poisson structure, SIGMA 8 (2012) 079 [arXiv:1207.5368].Google Scholar
  29. [29]
    L.D. Faddeev and L.A. Takhtakajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag (1987).Google Scholar
  30. [30]
    M. Semenov-Tian-Shansky, What is a classical r-matrix?, Funct. Anal. Appl. 17 (1983) 259 [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    M. Jimbo, Quantum R matrix for the generalized Toda system, Commun. Math. Phys. 102 (1986) 537 [http://projecteuclid.org/euclid.cmp/1104114539].
  32. [32]
    Avan, Boundary Lax pairs for the \( A_n^{(1) } \) Toda field theories, Nucl. Phys. B 821 (2009) 481 [arXiv:0809.2734] [INSPIRE].

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.LPTM, Universite de Cergy-Pontoise (CNRS UMR 8089)Cergy-PontoiseFrance
  2. 2.Department of Engineering SciencesUniversity of PatrasPatrasGreece

Personalised recommendations