Advertisement

Journal of High Energy Physics

, 2011:154 | Cite as

Spinning conformal blocks

  • Miguel S. Costa
  • João Penedones
  • David Poland
  • Slava Rychkov
Open Access
Article

Abstract

For conformal field theories in arbitrary dimensions, we introduce a method to derive the conformal blocks corresponding to the exchange of a traceless symmetric tensor appearing in four point functions of operators with spin. Using the embedding space formalism, we show that one can express all such conformal blocks in terms of simple differential operators acting on the basic scalar conformal blocks. This method gives all conformal blocks for conformal field theories in three dimensions. We demonstrate how this formalism can be applied in a few simple examples.

Keywords

AdS-CFT Correspondence Conformal Field Models in String Theory SpaceTime Symmetries 

References

  1. [1]
    S. Ferrara, A. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [INSPIRE].MathSciNetGoogle Scholar
  3. [3]
    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4d CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4d conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Poland and D. Simmons-Duffin, Bounds on 4d conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4d conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].ADSMathSciNetGoogle Scholar
  9. [9]
    A. Vichi, Improved bounds for CFT’s with global symmetries, arXiv:1106.4037 [INSPIRE].
  10. [10]
    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4d CFTs, arXiv:1109.5176 [INSPIRE].
  11. [11]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    I. Heemskerk and J. Sully, More holography from conformal field theory, JHEP 09 (2010) 099 [arXiv:1006.0976] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    A. Fitzpatrick, E. Katz, D. Poland and D. Simmons-Duffin, Effective conformal theory and the flat-space limit of AdS, JHEP 07 (2011) 023 [arXiv:1007.2412] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Mack, D-independent representation of conformal field theories in D dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].
  15. [15]
    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Fitzpatrick, J. Kaplan, J. Penedones, S. Raju and B.C. van Rees, A natural language for AdS/CFT correlators, arXiv:1107.1499 [INSPIRE].
  17. [17]
    M.F. Paulos, Towards Feynman rules for Mellin amplitudes, JHEP 10 (2011) 074 [arXiv:1107.1504] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    F. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    F. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    F. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].
  21. [21]
    J.-F. Fortin, K. Intriligator and A. Stergiou, Current OPEs in superconformal theories, arXiv:1107.1721 [INSPIRE].
  22. [22]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, New York, U.S.A. (1997).MATHCrossRefGoogle Scholar
  24. [24]
    G. Mack and A. Salam, Finite component field representations of the conformal group, Annals Phys. 53 (1969) 174 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    S. Ferrara, R. Gatto, A.F. Grillo, Conformal algebra in space-time and operator product expansion, Springer Tracts Mod. Phys. 67 (1973) 1.CrossRefGoogle Scholar
  26. [26]
    A. Erdélyi, Higher transcendental functions 2, McGraw-Hill, New York U.S.A. (1955).Google Scholar
  27. [27]
    E.M. Stein and G. Weiss, Introduction to Fourier analysis on euclidean spaces, Princeton University Press, Princeton U.S.A. (1971). MATHGoogle Scholar
  28. [28]
    G. Mack, Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory, Commun. Math. Phys. 53 (1977) 155.ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    G. Sotkov and R. Zaikov, Conformal invariant two point and three point functions for fields with arbitrary spin, Rept. Math. Phys. 12 (1977) 375 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    H. Osborn and A. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    P.A.M. Dirac, Wave equations in conformal space, Annals Math. 37 (1936) 429.MathSciNetCrossRefGoogle Scholar
  32. [32]
    D. Boulware, L. Brown and R. Peccei, Deep-inelastic electroproduction and conformal symmetry, Phys. Rev. D 2 (1970) 293 [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Cornalba, M.S. Costa and J. Penedones, Deep inelastic scattering in conformal QCD, JHEP 03 (2010) 133 [arXiv:0911.0043] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    S. Weinberg, Six-dimensional methods for four-dimensional conformal field theories, Phys. Rev. D 82 (2010) 045031 [arXiv:1006.3480] [INSPIRE].ADSGoogle Scholar
  35. [35]
    V. Dobrev, V. Petkova, S. Petrova and I. Todorov, Dynamical derivation of vacuum operator product expansion in Euclidean conformal quantum field theory, Phys. Rev. D 13 (1976) 887 [INSPIRE].ADSGoogle Scholar
  36. [36]
    V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova, I.T. Todorov, Harmonic analysis on the n-dimensional Lorentz group and its application to conformal quantum field theory, Springer, Berlin Germany (1977) .MATHGoogle Scholar
  37. [37]
    V. Bargmann and I. Todorov, Spaces of analytic functions on a complex cone as carries for the symmetric tensor representations of SO(n), J. Math. Phys. 18 (1977) 1141 [INSPIRE].MATHADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    S. Giombi, S. Prakash and X. Yin, A note on CFT correlators in three dimensions, arXiv:1104.4317 [INSPIRE].
  39. [39]
    D.M. Hofman and J. Maldacena, Conformal collider physics: energy and charge correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    S. Raju, BCFW for Witten diagrams, Phys. Rev. Lett. 106 (2011) 091601 [arXiv:1011.0780] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S. Raju, Recursion relations for AdS/CFT correlators, Phys. Rev. D 83 (2011) 126002 [arXiv:1102.4724] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Miguel S. Costa
    • 1
  • João Penedones
    • 2
  • David Poland
    • 3
    • 4
  • Slava Rychkov
    • 5
  1. 1.Centro de Física do Porto, Departamento de Física e AstronomiaFaculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  3. 3.Jefferson Physical LaboratoryHarvard UniversityCambridgeUSA
  4. 4.School of Natural Sciences, Institute for Advanced StudyPrincetonUSA
  5. 5.Laboratoire de Physique Théorique, École Normale Supérieure, and Faculté de PhysiqueUniversité Pierre et Marie CurieParis VIFrance

Personalised recommendations