Advertisement

Journal of High Energy Physics

, 2011:145 | Cite as

A fat Higgs with a magnetic personality

  • Nathaniel Craig
  • Daniel Stolarski
  • Jesse Thaler
Article

Abstract

We introduce a novel composite Higgs theory based on confining supersymmetric QCD. Supersymmetric duality plays a key role in this construction, with a “fat” Higgs boson emerging as a dual magnetic degree of freedom charged under the dual magnetic gauge group. Due to spontaneous color-flavor locking in the infrared, the electroweak gauge symmetry is aligned with the dual magnetic gauge group, allowing large Yukawa couplings between elementary matter fields and the composite Higgs. At the same time, this theory exhibits metastable supersymmetry breaking, leading to low-scale gauge mediation via composite messengers. The Higgs boson is heavier than in minimal supersymmetric theories, due to a large F -term quartic coupling as well as small non-decoupling D-terms. This theory predicts quasi-stable TeV-scale pseudo-modulini, some of which are charged under standard model color, possibly giving rise to long-lived R-hadrons at the LHC.

Keywords

Higgs Physics Supersymmetry and Duality Supersymmetry Breaking Supersymmetric Standard Model 

References

  1. [1]
    R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Chang, C. Kilic and R. Mahbubani, The new fat Higgs: slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [INSPIRE].ADSGoogle Scholar
  3. [3]
    A. Delgado and T.M. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    M. Berkooz, P.L. Cho, P. Kraus and M.J. Strassler, Dual descriptions of SO(10) SUSY gauge theories with arbitrary numbers of spinors and vectors, Phys. Rev. D 56 (1997) 7166 [hep-th/9705003] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].ADSGoogle Scholar
  7. [7]
    M.A. Luty, J. Terning and A.K. Grant, Electroweak symmetry breaking by strong supersymmetric dynamics at the TeV scale, Phys. Rev. D 63 (2001) 075001 [hep-ph/0006224] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H. Murayama, Technicolorful supersymmetry, hep-ph/0307293 [INSPIRE].
  9. [9]
    S. Schäfer-Nameki, C. Tamarit and G. Torroba, A hybrid Higgs, JHEP 03 (2011) 113 [arXiv:1005.0841] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    S. Schäfer-Nameki, C. Tamarit and G. Torroba, Naturalness from runaways in direct mediation, Phys. Rev. D 83 (2011) 035016 [arXiv:1011.0001] [INSPIRE].ADSGoogle Scholar
  11. [11]
    H. Fukushima, R. Kitano and M. Yamaguchi, SuperTopcolor, JHEP 01 (2011) 111 [arXiv:1012.5394] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    C.F. Kolda and J. March-Russell, Low-energy signatures of semiperturbative unification, Phys. Rev. D 55 (1997) 4252 [hep-ph/9609480] [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.R. Behbahani, N. Craig and G. Torroba, Single-sector supersymmetry breaking, chirality and unification, Phys. Rev. D 83 (2011) 015004 [arXiv:1009.2088] [INSPIRE].ADSGoogle Scholar
  15. [15]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    D. Green, A. Katz and Z. Komargodski, Direct gaugino mediation, Phys. Rev. Lett. 106 (2011) 061801 [arXiv:1008.2215] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    R. Essig, J.-F. Fortin, K. Sinha, G. Torroba and M.J. Strassler, Metastable supersymmetry breaking and multitrace deformations of SQCD, JHEP 03 (2009) 043 [arXiv:0812.3213] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].ADSGoogle Scholar
  19. [19]
    C. Tamarit, Decays of metastable vacua in SQCD, JHEP 06 (2011) 126 [arXiv:1105.3222] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    E. Gorbatov and M. Sudano, Sparticle masses in Higgsed gauge mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    A. Giveon, A. Katz and Z. Komargodski, On SQCD with massive and massless flavors, JHEP 06 (2008) 003 [arXiv:0804.1805] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  22. [22]
    A. Giveon, A. Katz, Z. Komargodski and D. Shih, Dynamical SUSY and R-symmetry breaking in SQCD with massive and massless flavors, JHEP 10 (2008) 092 [arXiv:0808.2901] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. Pagels and J.R. Primack, Supersymmetry, cosmology and new TeV physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-α forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Supersymmetric analysis and predictions based on the CDF eeγγ + missing E T event, Phys. Rev. Lett. 76 (1996) 3498 [hep-ph/9602239] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    S. Dimopoulos, S.D. Thomas and J.D. Wells, Implications of low-energy supersymmetry breaking at the Tevatron, Phys. Rev. D 54 (1996) 3283 [hep-ph/9604452] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders, Phys. Rev. D 54 (1996) 5395 [hep-ph/9605398] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].CrossRefMATHADSGoogle Scholar
  34. [34]
    M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = {7}\;TeV \) in events with two photons and missing transverse energy, Phys. Rev. Lett. 106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    K. Jedamzik, Did something decay, evaporate, or annihilate during big bang nucleosynthesis?, Phys. Rev. D 70 (2004) 063524 [astro-ph/0402344] [INSPIRE].ADSGoogle Scholar
  38. [38]
    S. Bailly, K. Jedamzik and G. Moultaka, Gravitino dark matter and the cosmic lithium abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS collaboration, V. Khachatryan et al., Search for heavy stable charged particles in pp collisions at \( \sqrt {s} = {7}\;TeV \), JHEP 03 (2011) 024 [arXiv:1101.1645] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [INSPIRE].ADSGoogle Scholar
  42. [42]
    CMS collaboration, V. Khachatryan et al., Search for stopped gluinos in pp collisions at \( \sqrt {s} = {7}\;TeV \), Phys. Rev. Lett. 106 (2011) 011801 [arXiv:1011.5861] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    C. Csáki, Y. Shirman and J. Terning, A Seiberg dual for the MSSM: partially composite W and Z, arXiv:1106.3074 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Nathaniel Craig
    • 1
    • 2
  • Daniel Stolarski
    • 3
    • 4
  • Jesse Thaler
    • 5
  1. 1.School of Natural Sciences, Institute for Advanced StudyPrincetonUSA
  2. 2.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA
  3. 3.Maryland Center for Fundamental Physics, Department of PhysicsUniversity of MarylandCollege ParkUSA
  4. 4.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreUSA
  5. 5.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations