Advertisement

Journal of High Energy Physics

, 2011:89 | Cite as

Electroweak baryogenesis in two Higgs doublet models and B meson anomalies

  • James M. Cline
  • Kimmo Kainulainen
  • Michael Trott
Article

Abstract

Motivated by 3.9σ evidence of a CP-violating phase beyond the standard model in the like-sign dimuon asymmetry reported by D∅, we examine the potential for two Higgs doublet models (2HDMs) to achieve successful electroweak baryogenesis (EWBG) while explaining the dimuon anomaly. Our emphasis is on the minimal flavour violating 2HDM, but our numerical scans of model parameter space include type I and type II models as special cases. We incorporate relevant particle physics constraints, including electroweak precision data, b → sγ, the neutron electric dipole moment, R b , and perturbative coupling bounds to constrain the model. Surprisingly, we find that a large enough baryon asymmetry is only consistently achieved in a small subset of parameter space in 2HDMs, regardless of trying to simultaneously account for any B physics anomaly. There is some tension between simultaneous explanation of the dimuon anomaly and baryogenesis, but using a Markov chain Monte Carlo we find several models within 1σ of the central values. We point out shortcomings with previous studies that reached different conclusions. The restricted parameter space that allows for EWBG makes this scenario highly predictive for collider searches. We discuss the most promising signatures to pursue at the LHC for EWBG-compatible models.

Keywords

Beyond Standard Model B-Physics CP violation 

References

  1. [1]
    D0 collaboration, V.M. Abazov et al., Measurement of the anomalous like-sign dimuon charge asymmetry with 9 fb −1 of \( p\overline p \) collisions, Phys. Rev. D 84 (2011) 052007 [arXiv:1106.6308] [INSPIRE].ADSGoogle Scholar
  2. [2]
    D0 collaboration, V.M. Abazov et al., Evidence for an anomalous like-sign dimuon charge asymmetry, Phys. Rev. D 82 (2010) 032001 [arXiv:1005.2757] [INSPIRE].ADSGoogle Scholar
  3. [3]
    D0 collaboration, V.M. Abazov et al., Measurement of the CP-violating phase \( \phi_s^{{J/\psi \phi }} \) using the flavor-tagged decay \( B_s^0 \to J/\psi \phi \) in 8 fb −1 of \( p\overline p \) collisions, arXiv:1109.3166 [INSPIRE].
  4. [4]
    A. Lenz et al., Anatomy of New Physics in \( B - \overline B \) mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].ADSGoogle Scholar
  5. [5]
    Belle collaboration, K. Ikado et al., Evidence of the Purely Leptonic Decay \( {B^{ - }} \to \tau \overline \nu \left( \tau \right) \), Phys. Rev. Lett. 97 (2006) 251802 [hep-ex/0604018] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    BABAR collaboration, B. Aubert et al., A Search for B +τ + ν with Hadronic B tags, Phys. Rev. D 77 (2008) 011107 [arXiv:0708.2260] [INSPIRE].ADSGoogle Scholar
  7. [7]
    BABAR collaboration, B. Aubert et al., A Search for B + + ν Recoiling Against \( {B^{ - }} \to {D^0}{\ell^{ - }}\overline \nu X \), Phys. Rev. D 81 (2010) 051101 [arXiv:0809.4027] [INSPIRE].ADSGoogle Scholar
  8. [8]
    Belle collaboration, I. Adachi et al., Measurement of \( {B^{ - }} \to \tau - {\overline \nu_{\tau }} \) Decay With a Semileptonic Tagging Method, arXiv:0809.3834 [INSPIRE].
  9. [9]
    G. Blankenburg and G. Isidori, B-¿tau nu in multi-Higgs models with MFV, arXiv:1107.1216 [INSPIRE].
  10. [10]
    S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  11. [11]
    R. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].ADSGoogle Scholar
  12. [12]
    L. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Tulin and P. Winslow, Anomalous B meson mixing and baryogenesis, Phys. Rev. D 84 (2011) 034013 [arXiv:1105.2848] [INSPIRE].ADSGoogle Scholar
  15. [15]
    N. Turok and J. Zadrozny, Electroweak baryogenesis in the two doublet model, Nucl. Phys. B 358 (1991) 471 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    N. Turok and J. Zadrozny, Phase transitions in the two doublet model, Nucl. Phys. B 369 (1992) 729 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    K. Funakubo, A. Kakuto and K. Takenaga, The Effective potential of electroweak theory with two massless Higgs doublets at finite temperature, Prog. Theor. Phys. 91 (1994) 341 [hep-ph/9310267] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Davies, C. froggatt, G. Jenkins and R. Moorhouse, Baryogenesis constraints on two Higgs doublet models, Phys. Lett. B 336 (1994) 464 [INSPIRE].ADSGoogle Scholar
  19. [19]
    J.M. Cline, K. Kainulainen and A.P. Vischer, Dynamics of two Higgs doublet CP-violation and baryogenesis at the electroweak phase transition, Phys. Rev. D 54 (1996) 2451 [hep-ph/9506284] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Laine and K. Rummukainen, Two Higgs doublet dynamics at the electroweak phase transition: A Nonperturbative study, Nucl. Phys. B 597 (2001) 23 [hep-lat/0009025] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP 11 (2006) 038 [hep-ph/0605242] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Z. Ligeti, M. Papucci, G. Perez and J. Zupan, Implication s of the dimuon CP asymmetry in B d,s decays, Phys. Rev. Lett. 105 (2010) 131601 [arXiv:1006.0432] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    K. Blum, Y. Hochberg and Y. Nir, Implications of large dimuon CP asymmetry in B d,s decays on minimal flavor violation with low tan β, JHEP 09 (2010) 035 [arXiv:1007.1872] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: Natural Flavour Conservation vs. Minimal Flavour Violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.J. Buras, G. Isidori and P. Paradisi, EDMs versus CPV in B s,d mixing in two Higgs doublet models with MFV, Phys. Lett. B 694 (2011) 402 [arXiv:1007.5291] [INSPIRE].ADSGoogle Scholar
  26. [26]
    M. Trott and M.B. Wise, On theories of enhanced CP-violation in B s,d meson mixing, JHEP 11 (2010) 157 [arXiv:1009.2813] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Feldmann and T. Mannel, Large Top Mass and Non-Linear Representation of Flavour Symmetry, Phys. Rev. Lett. 100 (2008) 171601 [arXiv:0801.1802] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General Minimal Flavor Violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.A. Bagger, K.T. Matchev and R.-J. Zhang, QCD corrections to flavor changing neutral currents in the supersymmetric standard model, Phys. Lett. B 412 (1997) 77 [hep-ph/9707225] [INSPIRE].ADSGoogle Scholar
  30. [30]
    LEP Higgs Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107031 [INSPIRE].
  31. [31]
    CDF collaboration, T. Aaltonen et al., Search for charged Higgs bosons in decays of top quarks in \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96}\;TeV \), Phys. Rev. Lett. 103 (2009) 101803 [arXiv:0907.1269] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    D0 collaboration, V. Abazov et al., Search for charged Higgs bosons in decays of top quarks, Phys. Rev. D 80 (2009) 051107 [arXiv:0906.5326] [INSPIRE].ADSGoogle Scholar
  33. [33]
    P. Ferreira and D. Jones, Bounds on scalar masses in two Higgs doublet models, JHEP 08 (2009) 069 [arXiv:0903.2856] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    I. Ginzburg and I. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev. D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE].ADSGoogle Scholar
  36. [36]
    G. Degrassi and P. Slavich, QCD Corrections in two-Higgs-doublet extensions of the Standard Model with Minimal Flavor Violation, Phys. Rev. D 81 (2010) 075001 [arXiv:1002.1071] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Jung, A. Pich and P. Tuzon, Charged-Higgs phenomenology in the Aligned two-Higgs-doublet model, JHEP 11 (2010) 003 [arXiv:1006.0470] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [arXiv:0802.1413] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to BX s γ: Standard model and two Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Burgess, S. Godfrey, H. Konig, D. London and I. Maksymyk, A Global fit to extended oblique parameters, Phys. Lett. B 326 (1994) 276 [hep-ph/9307337] [INSPIRE].ADSGoogle Scholar
  42. [42]
    I. Maksymyk, C. Burgess and D. London, Beyond S, T and U, Phys. Rev. D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. Burgess, M. Trott and S. Zuberi, Light Octet Scalars, a Heavy Higgs and Minimal Flavour Violation, JHEP 09 (2009) 082 [arXiv:0907.2696] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P.B. Arnold and O. Espinosa, The Effective potential and first order phase transitions: Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [hep-ph/9212235] [INSPIRE].ADSGoogle Scholar
  46. [46]
    R.R. Parwani, Resummation in a hot scalar field theory, Phys. Rev. D 45 (1992) 4695 [Erratum ibid. D 48 (1993) 5965] [hep-ph/9204216] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Huber, P. John, M. Laine and M. Schmidt, CP violating bubble wall profiles, Phys. Lett. B 475 (2000) 104 [hep-ph/9912278] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis, JHEP 07 (2000) 018 [hep-ph/0006119] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    L. Fromme and S.J. Huber, Top transport in electroweak baryogenesis, JHEP 03 (2007) 049 [hep-ph/0604159] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: Thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 2: The Classical regime, Phys. Rev. D 53 (1996) 2958 [hep-ph/9410282] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J.M. Cline, M. Joyce and K. Kainulainen, Supersymmetric electroweak baryogenesis in the WKB approximation, Phys. Lett. B 417 (1998) 79 [hep-ph/9708393] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.M. Cline and K. Kainulainen, A New source for electroweak baryogenesis in the MSSM, Phys. Rev. Lett. 85 (2000) 5519 [hep-ph/0002272] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, First principle derivation of semiclassical force for electroweak baryogenesis, JHEP 06 (2001) 031 [hep-ph/0105295] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, Semiclassical force for electroweak baryogenesis: Three-dimensional derivation, Phys. Rev. D 66 (2002) 043502 [hep-ph/0202177] [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Kainulainen, T. Prokopec, M.G. Schmidt and S. Weinstock, Quantum Boltzmann equations for electroweak baryogenesis including gauge fields, hep-ph/0201293 [INSPIRE].
  57. [57]
    T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h bar and electroweak baryogenesis. Part 1, Annals Phys. 314 (2004) 208 [hep-ph/0312110] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  58. [58]
    T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. Part II, Annals Phys. 314 (2004) 267 [hep-ph/0406140] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  59. [59]
    A. Riotto, Towards a nonequilibrium quantum field theory approach to electroweak baryogenesis, Phys. Rev. D 53 (1996) 5834 [hep-ph/9510271] [INSPIRE].ADSGoogle Scholar
  60. [60]
    A. Riotto, Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations, Nucl. Phys. B 518 (1998) 339 [hep-ph/9712221] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    M.S. Carena, M. Quirós, A. Riotto, I. Vilja and C. Wagner, Electroweak baryogenesis and low-energy supersymmetry, Nucl. Phys. B 503 (1997) 387 [hep-ph/9702409] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Coherent quantum Boltzmann equations from cQPA, JHEP 12 (2010) 072 [arXiv:1006.1929] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Coherent quasiparticle approximation (cQPA) and nonlocal coherence, J. Phys. Conf. Ser. 220 (2010) 012007 [arXiv:0912.2490] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Kinetic theory for scalar fields with nonlocal quantum coherence, JHEP 05 (2009) 119 [arXiv:0812.4029] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Kinetic transport theory with quantum coherence, Nucl. Phys. A 820 (2009) 203C-206C [arXiv:0811.0936] [INSPIRE].ADSGoogle Scholar
  66. [66]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Quantum kinetic theory for fermions in temporally varying backgrounds, JHEP 09 (2008) 032 [arXiv:0807.1435] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    M. Herranen, K. Kainulainen and P.M. Rahkila, Towards a kinetic theory for fermions with quantum coherence, Nucl. Phys. B 810 (2009) 389 [arXiv:0807.1415] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    V. Cirigliano, C. Lee, M.J. Ramsey-Musolf and S. Tulin, Flavored Quantum Boltzmann Equations, Phys. Rev. D 81 (2010) 103503 [arXiv:0912.3523] [INSPIRE].ADSGoogle Scholar
  69. [69]
    V. Cirigliano, C. Lee and S. Tulin, Resonant Flavor Oscillations in Electroweak Baryogenesis, Phys. Rev. D 84 (2011) 056006 [arXiv:1106.0747] [INSPIRE].ADSGoogle Scholar
  70. [70]
    D0 collaboration, Updated Measurement of the CP-Violating Phase \( \phi_s^{{J/psi\phi }} \) Using Flavor-tagged Decay \( B_s^0 \to J/psi\phi \), D0 Note 6098-CONF.Google Scholar
  71. [71]
    CDF collaboration, An Updated Measurement of the CP Violating Phase in \( B_s^0 \to J/psi\phi \) using 5.2 f b −1 of Integrated Luminosity, CDF Note 10206.Google Scholar
  72. [72]
    Y. Grossman, Y. Nir and G. Perez, Testing New Indirect CP-violation, Phys. Rev. Lett. 103 (2009) 071602 [arXiv:0904.0305] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Calvi, Tagged time-dependent angular analysis of \( B_s^0 \to J/\psi \phi \) decays with the 2010 LHCb data, LHCb-CONF-2011-006.Google Scholar
  74. [74]
    A. Djouadi, The Anatomy of electro-weak symmetry breaking The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Mantry, M. Trott and M.B. Wise, The Higgs decay width in multi-scalar doublet models, Phys. Rev. D 77 (2008) 013006 [arXiv:0709.1505] [INSPIRE].ADSGoogle Scholar
  76. [76]
    ATLAS collaboration, A Search for \( t\overline t \) Resonances in the Lepton Plus Jets Channel in 200 pb −1 of pp Collisions at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2011-087 (2011).Google Scholar
  77. [77]
    K.D. Lane and M. Ramana, Walking technicolor signatures at hadron colliders, Phys. Rev. D 44 (1991) 2678 [INSPIRE].ADSGoogle Scholar
  78. [78]
    R. Barlow, Asymmetric statistical errors, physics/0406120 [INSPIRE].
  79. [79]
    H.H. Patel and M.J. Ramsey-Musolf, Baryon Washout, Electroweak Phase Transition and Perturbation Theory, JHEP 07 (2011) 029 [arXiv:1101.4665] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • James M. Cline
    • 1
  • Kimmo Kainulainen
    • 2
    • 3
  • Michael Trott
    • 4
  1. 1.Department of PhysicsMcGill UniversityMontrealCanada
  2. 2.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  3. 3.Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  4. 4.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations