Journal of High Energy Physics

, 2011:88 | Cite as

Analytical investigation of the phase transition between holographic insulator and superconductor in Gauss-Bonnet gravity

  • Qiyuan Pan
  • Jiliang Jing
  • Bin Wang


We employ the variational method for the Sturm-Liouville eigenvalue problem to analytically study the phase transition between the holographic insulator and supercon- ductor in the Gauss-Bonnet gravity. By investigating the s-wave and p-wave holographic insulator/superconductor models, we find that this analytic method is more effective to obtain the analytic results on the condensation and the critical phenomena in the AdS soliton background in Gauss-Bonnet gravity. Our analytic result can be used to back up the numerical computations in the AdS soliton with Gauss-Bonnet correction.


Black Holes in String Theory AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetMATHGoogle Scholar
  2. [2]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE]MathSciNetADSMATHGoogle Scholar
  3. [3]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].ADSGoogle Scholar
  5. [5]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  9. [9]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [INSPIRE].
  10. [10]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic Superconductor/Insulator Transition at Zero Temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Surya, K. Schleich and D.M. Witt, Phase transitions for flat AdS black holes, Phys. Rev. Lett. 86 (2001) 5231 [hep-th/0101134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    G.T. Horowitz and B. Way, Complete Phase Diagrams for a Holographic Superconductor/Insulator System, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    Y. Peng, Q. Pan and B. Wang, Various types of phase transitions in the AdS soliton background, Phys. Lett. B 699 (2011) 383 [arXiv:1104.2478] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P. Basu, F. Nogueira, M. Rozali, J.B. Stang and M. Van Raamsdonk, Towards A Holographic Model of Color Superconductivity, New J. Phys. 13 (2011) 055001 [arXiv:1101.4042] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Brihaye and B. Hartmann, Holographic superfluid/fluid/insulator phase transitions in 2 + 1 dimensions, Phys. Rev. D 83 (2011) 126008 [arXiv:1101.5708] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A. Akhavan and M. Alishahiha, P-Wave Holographic Insulator/Superconductor Phase Transition, Phys. Rev. D 83 (2011) 086003 [arXiv:1011.6158] [INSPIRE].ADSGoogle Scholar
  17. [17]
    R.-G. Cai, H.-F. Li and H.-Q. Zhang, Analytical Studies on Holographic Insulator/Superconductor Phase Transitions, Phys. Rev. D 83 (2011) 126007 [arXiv:1103.5568] [INSPIRE].ADSGoogle Scholar
  18. [18]
    Q. Pan, B. Wang, E. Papantonopoulos, J. Oliveira and A. Pavan, Holographic Superconductors with various condensates in Einstein-Gauss-Bonnet gravity, Phys. Rev. D 81 (2010) 106007 [arXiv:0912.2475] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Gregory, S. Kanno and J. Soda, Holographic Superconductors with Higher Curvature Corrections, JHEP 10 (2009) 010 [arXiv:0907.3203] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. Kanno, A Note on Gauss-Bonnet Holographic Superconductors, Class. Quant. Grav. 28 (2011) 127001 [arXiv:1103.5022] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    X.-H. Ge, B. Wang, S.-F. Wu and G.-H. Yang, Analytical study on holographic superconductors in external magnetic field, JHEP 08 (2010) 108 [arXiv:1002.4901] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    X.-H. Ge, Analytical calculation on critical magnetic field in holographic superconductors with backreaction, arXiv:1105.4333 [INSPIRE].
  23. [23]
    G. Siopsis and J. Therrien, Analytic calculation of properties of holographic superconductors, JHEP 05 (2010) 013 [arXiv:1003.4275] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Siopsis, J. Therrien and S. Musiri, Holographic superconductors near the Breitenlohner-Freedman bound, arXiv:1011.2938 [INSPIRE].
  25. [25]
    H.-B. Zeng, X. Gao, Y. Jiang and H.-S. Zong, Analytical Computation of Critical Exponents in Several Holographic Superconductors, JHEP 05 (2011) 002 [arXiv:1012.5564] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    H.-F. Li, R.-G. Cai and H.-Q. Zhang, Analytical Studies on Holographic Superconductors in Gauss-Bonnet Gravity, JHEP 04 (2011) 028 [arXiv:1103.2833] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Liu, Q. Pan, B. Wang and R.-G. Cai, Dynamical perturbations and critical phenomena in Gauss-Bonnet-AdS black holes, Phys. Lett. B 693 (2010) 343 [arXiv:1007.2536] [INSPIRE].MathSciNetADSGoogle Scholar
  28. [28]
    R.-G. Cai, S.P. Kim and B. Wang, Ricci flat black holes and Hawking-Page phase transition in Gauss-Bonnet gravity and dilaton gravity, Phys. Rev. D 76 (2007) 024011 [arXiv:0705.2469] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSGoogle Scholar
  30. [30]
    I.M. Gelfand and S.V. Fomin, Calculaus of Variations, Revised English Edition, Translated and Edited by R.A. Silverman, Prentice-Hall, Inc. Englewood Cliff, New Jersey U.S.A. (1963).Google Scholar
  31. [31]
    Y. Brihaye and B. Hartmann, Holographic Superconductors in 3 + 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [INSPIRE].ADSGoogle Scholar
  32. [32]
    L. Barclay, R. Gregory, S. Kanno and P. Sutcliffe, Gauss-Bonnet Holographic Superconductors, JHEP 12 (2010) 029 [arXiv:1009.1991] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    Q. Pan and B. Wang, General holographic superconductor models with Gauss-Bonnet corrections, Phys. Lett. B 693 (2010) 159 [arXiv:1005.4743] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic p-wave superconductors from Gauss-Bonnet gravity, Phys. Rev. D 82 (2010) 066007 [arXiv:1007.3321] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Siani, Holographic Superconductors and Higher Curvature Corrections, JHEP 12 (2010) 035 [arXiv:1010.0700] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    D. Momeni, M. Setare and N. Majd, Holographic superconductors in a model of non-relativistic gravity, JHEP 05 (2011) 118 [arXiv:1003.0376] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Annals Phys. 144 (1982) 249 [INSPIRE]MathSciNetADSMATHCrossRefGoogle Scholar
  38. [38]
    S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S.S. Gubser and S.S. Pufu, The Gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped Holographic Superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [INSPIRE].ADSGoogle Scholar
  41. [41]
    M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Institute of Physics and Department of PhysicsHunan Normal UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of EducationHunan Normal UniversityChangshaPeople’s Republic of China
  3. 3.INPAC and Department of PhysicsShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations