Advertisement

Journal of High Energy Physics

, 2011:81 | Cite as

Two-loop electroweak corrections to high energy large-angle Bhabha scattering

  • A. A. Penin
  • G. Ryan
Article

Abstract

We compute the dominant logarithmically enhanced two-loop electroweak corrections to the electron-positron scattering differential cross section in the high energy limit for large scattering angles. Depending on the scattering angle and energy the two-loop corrections may exceed one percent and are important for the high-precision luminosity spectrum determination at a future linear collider.

Keywords

LEP HERA and SLC Physics Electromagnetic Processes and Properties Standard Model 

References

  1. [1]
    H. Bhabha, The scattering of positrons by electrons with exchange on Dirac’s theory of the positron, Proc. Roy. Soc. Lond. A 154 (1936) 195 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Jadach, O. Nicrosini, H. Anlauf, A. Arbuzov, M. Bigi, et al., Event generators for Bhabha scattering, hep-ph/9602393 [INSPIRE].
  3. [3]
    G. Montagna, O. Nicrosini and F. Piccinini, Precision physics at LEP, Riv. Nuovo Cim. 21N9 (1998) 1.CrossRefGoogle Scholar
  4. [4]
    Working Group on Radiative Corrections and Monte Carlo Generators for Low Energies collaboration, S. Actis et al., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66 (2010) 585 [arXiv:0912.0749] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    N. Toomi, J. Fujimoto, S. Kawabata, Y. Kurihara and T. Watanabe, Luminosity spectrum measurement in future e + e linear colliders using large angle Bhabha events, Phys. Lett. B 429 (1998) 162 [INSPIRE].ADSGoogle Scholar
  6. [6]
    ECFA/DESY LC Physics Working Group collaboration, J. Aguilar-Saavedra et al., TESLA: The Superconducting electron positron linear collider with an integrated x-ray laser laboratory. Technical design report. Part 3. Physics at an e + e linear collider, hep-ph/0106315 [INSPIRE].
  7. [7]
    M. Böhm, A. Denner and W. Hollik, Radiative Corrections to Bhabha Scattering at High-Energies. 1. Virtual and Soft Photon Corrections, Nucl. Phys. B 304 (1988) 687 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Stahl, Luminosity measurement via Bhabha scattering: Precision requirements for the luminosity calorimeter, INSPIRE.
  9. [9]
    V.S. Fadin, E. Kuraev, L. Trentadue, L. Lipatov and N. Merenkov, Generalized eikonal representation of the small angle e + e scattering amplitude at high-energy, Phys. Atom. Nucl. 56 (1993) 1537 [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Arbuzov, E. Kuraev, N. Merenkov and L. Trentadue, Virtual and soft real pair production in large angle Bhabha scattering, Phys. Atom. Nucl. 60 (1997) 591 [INSPIRE].ADSGoogle Scholar
  11. [11]
    B. Ward, S. Jadach, M. Melles and S. Yost, New results on the theoretical precision of the LEP/SLC luminosity, Phys. Lett. B 450 (1999) 262 [hep-ph/9811245] [INSPIRE].ADSGoogle Scholar
  12. [12]
    Z. Bern, L.J. Dixon and A. Ghinculov, Two loop correction to Bhabha scattering, Phys. Rev. D 63 (2001) 053007 [hep-ph/0010075] [INSPIRE].ADSGoogle Scholar
  13. [13]
    E. Glover, J. Tausk and J. Van der Bij, Second order contributions to elastic large angle Bhabha scattering, Phys. Lett. B 516 (2001) 33 [hep-ph/0106052] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J. van der Bij, Two-loop N(F) = 1 QED Bhabha scattering differential cross section, Nucl. Phys. B 701 (2004) 121 [hep-ph/0405275] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi and J. van der Bij, Two-loop N(F) = 1 QED Bhabha scattering: Soft emission and numerical evaluation of the differential cross-section, Nucl. Phys. B 716 (2005) 280 [hep-ph/0411321] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.A. Penin, Two-loop corrections to Bhabha scattering, Phys. Rev. Lett. 95 (2005) 010408 [hep-ph/0501120] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Penin, Two-loop photonic corrections to massive Bhabha scattering, Nucl. Phys. B 734 (2006) 185 [hep-ph/0508127] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Bonciani and A. Ferroglia, Two-loop Bhabha scattering in QED, Phys. Rev. D 72 (2005) 056004 [hep-ph/0507047] [INSPIRE].ADSGoogle Scholar
  19. [19]
    T. Becher and K. Melnikov, Two-loop QED corrections to Bhabha scattering, JHEP 06 (2007) 084 [arXiv:0704.3582] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Bonciani, A. Ferroglia and A. Penin, Heavy-flavor contribution to Bhabha scattering, Phys. Rev. Lett. 100 (2008) 131601 [arXiv:0710.4775] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Bonciani, A. Ferroglia and A. Penin, Calculation of the Two-Loop Heavy-Flavor Contribution to Bhabha Scattering, JHEP 02 (2008) 080 [arXiv:0802.2215] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Actis, M. Czakon, J. Gluza and T. Riemann, Virtual hadronic and leptonic contributions to Bhabha scattering, Phys. Rev. Lett. 100 (2008) 131602 [arXiv:0711.3847] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    J.H. Kuhn and S. Uccirati, Two-loop QED hadronic corrections to Bhabha scattering, Nucl. Phys. B 806 (2009) 300 [arXiv:0807.1284] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].ADSGoogle Scholar
  25. [25]
    V.S. Fadin, L. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high-energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [INSPIRE].ADSGoogle Scholar
  26. [26]
    J.H. Kuhn, A. Penin and V.A. Smirnov, Summing up subleading Sudakov logarithms, Eur. Phys. J. C 17 (2000) 97 [hep-ph/9912503] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.H. Kuhn, A. Penin and V.A. Smirnov, Subleading Sudakov logarithms in electroweak processes, Nucl. Phys. Proc. Suppl. 89 (2000) 94 [hep-ph/0005301] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Beccaria, P. Ciafaloni, D. Comelli, F. Renard and C. Verzegnassi, The Role of the top mass in b production at future lepton colliders, Phys. Rev. D 61 (2000) 011301 [hep-ph/9907389] [INSPIRE].ADSGoogle Scholar
  29. [29]
    M. Beccaria, P. Ciafaloni, D. Comelli, F. Renard and C. Verzegnassi, Logarithmic expansion of electroweak corrections to four-fermion processes in the TeV region, Phys. Rev. D 61 (2000) 073005 [hep-ph/9906319] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J.H. Kuhn, S. Moch, A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B 616 (2001) 286 [Erratum ibid. B 648 (2002)455] [hep-ph/0106298] [INSPIRE].
  31. [31]
    A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C 21 (2001) 63 [hep-ph/0104127] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Denner, M. Melles and S. Pozzorini, Two loop electroweak angular dependent logarithms at high-energies, Nucl. Phys. B 662 (2003) 299 [hep-ph/0301241] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B. Feucht et al., Two loop Sudakov form-factor in a theory with mass gap, Phys. Rev. Lett. 93 (2004) 101802 [hep-ph/0404082] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Jantzen, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms, Phys. Rev. D 72 (2005) 051301(R) [Erratum ibid. D 74 (2006) 019901] [hep-ph/0504111] [INSPIRE].
  36. [36]
    B. Jantzen, J.H. Kuhn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms in four-fermion processes at high energy, Nucl. Phys. B 731 (2005) 188 [Erratum ibid. B 752 (2006)32] [hep-ph/0509157] [INSPIRE].
  37. [37]
    J.H. Kuhn, F. Metzler and A. Penin, Next-to-next-to-leading electroweak logarithms in W-pair production at ILC, Nucl. Phys. B 795 (2008) 277 [arXiv:0709.4055] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J. Chiu, F. Golf, R. Kelley and A.V. Manohar, Electroweak Sudakov corrections using effective field theory, Phys. Rev. Lett. 100 (2008) 021802 [arXiv:0709.2377] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J. Kuhn, F. Metzler, A. Penin and S. Uccirati, Next-to-Next-to-Leading Electroweak Logarithms for W-Pair Production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [INSPIRE].MathSciNetMATHGoogle Scholar
  42. [42]
    R. Jackiw, Dynamics at high momentum and the vertex function of spinor electrodynamics, Annals Phys. 48 (1968) 292 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Leiter, Classical elementary measurement electrodynamics, Annals Phys. 51 (1969) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.H. Mueller, On the asymptotic behavior of the Sudakov form-factor, Phys. Rev. D 20 (1979) 2037 [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor, Phys. Rev. D 22 (1980) 1478 [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Sen, Asymptotic Behavior of the Sudakov Form-Factor in QCD, Phys. Rev. D 24 (1981) 3281 [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Sen, Asymptotic Behavior of the Wide Angle On-Shell Quark Scattering Amplitudes in Nonabelian Gauge Theories, Phys. Rev. D 28 (1983) 860 [INSPIRE].ADSGoogle Scholar
  48. [48]
    G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    G. Balossini, C.M. Carloni Calame, G. Montagna, O. Nicrosini and F. Piccinini, Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758 (2006) 227 [hep-ph/0607181] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S. Jadach, W. Placzek and B. Ward, BHWIDE 1.00: O(alpha) YFS exponentiated Monte Carlo for Bhabha scattering at wide angles for LEP-1 / SLC and LEP-2, Phys. Lett. B 390 (1997) 298 [hep-ph/9608412] [INSPIRE].ADSGoogle Scholar
  51. [51]
    A. Arbuzov, G. Fedotovich, E. Kuraev, N. Merenkov, V. Rushai, et al., Large angle QED processes at e + e colliders at energies below 3 GeV, JHEP 10 (1997) 001 [hep-ph/9702262] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity Of AlbertaEdmontonCanada
  2. 2.Institut für Theoretische TeilchenphysikKITKarlsruheGermany
  3. 3.Institute for Nuclear Research of Russian Academy of SciencesMoscowRussia

Personalised recommendations