Advertisement

Journal of High Energy Physics

, 2011:49 | Cite as

Yangian symmetry of light-like Wilson loops

  • J. M. Drummond
  • L. Ferro
  • E. Ragoucy
Open Access
Article

Abstract

We show that a certain class of light-like Wilson loops exhibits a Yangian symmetry at one loop, or equivalently, in an Abelian theory. The Wilson loops we discuss are equivalent to one-loop MHV amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills theory in a certain kinematical regime. The fact that we find a Yangian symmetry constraining their functional form can be thought of as the effect of the original conformal symmetry associated to the scattering amplitudes in the \( \mathcal{N} = 4 \) theory.

Keywords

Supersymmetric gauge theory Quantum Groups AdS-CFT Correspondence Conformal and W Symmetry 

References

  1. [1]
    S.J. Parke and T. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE]ADSCrossRefGoogle Scholar
  2. [2]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Brandhuber, P. Heslop and G. Travaglini, A Note on dual superconformal symmetry of the \( \mathcal{N} = 4 \) super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    J. Drummond and J. Henn, All tree-level amplitudes in \( \mathcal{N} = 4 \) SYM, JHEP 04 (2009) 018 [arXiv:0808.2475] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in \( \mathcal{N} = 4 \) super-Yang-Mills theory, Nucl. Phys . B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills theory, JHEP 05 (2009)046 [arXiv:0902.2987] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A Duality For The S Matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    L. Mason and D. Skinner, Dual Superconformal Invariance, Momentum Twistors and Grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Arkani-Hamed, F. Cachazo and C. Cheung, The Grassmannian Origin Of Dual Superconformal Invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J. Drummond and L. Ferro, Yangians, Grassmannians and T-duality, JHEP 07 (2010) 027 [arXiv:1001.3348] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    J. Drummond and L. Ferro, The Yangian origin of the Grassmannian integral, JHEP 12 (2010) 010 [arXiv:1002.4622] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    G. Korchemsky and E. Sokatchev, Superconformal invariants for scattering amplitudes in \( \mathcal{N} = 4 \) SYM theory, Nucl. Phys. B 839 (2010)377 [arXiv:1002.4625] [INSPIRE]MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The All-Loop Integrand For Scattering Amplitudes in Planar \( \mathcal{N} = 4 \) SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of \( \mathcal{N} = 4 \) super Yang-Mills, JHEP 01 (2010) 077 [arXiv:0908.0684] [INSPIRE]MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in \( \mathcal{N} = 4 \) SYM: exponentiation and Regge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated \( \mathcal{N} = 4 \) SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    Z. Bern, J.J. Carrasco, T. Dennen, Y.-t. Huang and H. Ita, Generalized Unitarity and Six-Dimensional Helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE]ADSGoogle Scholar
  20. [20]
    S. Caron-Huot and D. O’Connell, Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions, JHEP 08 (2011) 014 [arXiv:1010.5487] [INSPIRE].CrossRefADSGoogle Scholar
  21. [21]
    T. Dennen and Y.-t. Huang, Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes, JHEP 01 (2011) 140 [arXiv:1010.5874] [INSPIRE]ADSCrossRefGoogle Scholar
  22. [22]
    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    G. Korchemsky, J. Drummond and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    A. Brandhuber, P. Heslop and G. Travaglini, MHV amplitudes in \( \mathcal{N} = 4 \) super Yang-Mills and Wilson loops, Nucl. Phys. B 794 (2008) 231 [arXiv:0707.1153] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    Z. Bern et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    L. Mason and D. Skinner, The Complete Planar S-matrix of \( \mathcal{N} = 4 \) SYM as a Wilson Loop in Twistor Space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  28. [28]
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, On planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, Exacting \( \mathcal{N} = 4 \) Superconformal Symmetry, JHEP 11 (2009) 056 [arXiv:0905.3738] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    G. Korchemsky and E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in \( \mathcal{N} = 4 \) SYM theory, Nucl. Phys. B 832 (2010) 1 [arXiv:0906.1737] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    A. Sever and P. Vieira, Symmetries of the \( \mathcal{N} = 4 \) SYM S-matrix, arXiv:0908.2437 [INSPIRE].
  34. [34]
    N. Beisert, J. Henn, T. McLoughlin and J. Plefka, One-Loop Superconformal and Yangian Symmetries of Scattering Amplitudes in \( \mathcal{N} = 4 \) Super Yang-Mills, JHEP 04 (2010) 085 [arXiv:1002.1733] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    R. Ricci, A.A. Tseytlin and M. Wolf, On T-duality and Integrability for Strings on AdS Backgrounds, JHEP 12 (2007) 082 [arXiv:0711.0707] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Berkovits and J. Maldacena, Fermionic T-duality, Dual Superconformal Symmetry and the Amplitude/Wilson Loop Connection, JHEP 09 (2008) 062 [arXiv:0807.3196] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    N. Beisert, R. Ricci, A.A. Tseytlin and M. Wolf, Dual Superconformal Symmetry from AdS 5 × S 5 Superstring Integrability, Phys. Rev. D 78 (2008) 126004 [arXiv:0807.3228] [INSPIRE].MathSciNetADSGoogle Scholar
  38. [38]
    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An Operator Product Expansion for Polygonal null Wilson Loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Bootstrapping Null Polygon Wilson Loops, JHEP 03 (2011) 092 [arXiv:1010.5009] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    L.F. Alday and J. Maldacena, Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space, JHEP 11 (2009) 082 [arXiv:0904.0663] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    P. Heslop and V.V. Khoze, Analytic Results for MHV Wilson Loops, JHEP 11 (2010) 035 [arXiv:1007.1805] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in \( \mathcal{N} = 4 \) SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    V. Del Duca, C. Duhr and V.A. Smirnov, A Two-Loop Octagon Wilson Loop in \( \mathcal{N} = 4 \) SYM, JHEP 09 (2010) 015 [arXiv:1006.4127] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Sov. Math. Dokl. 32 (1985) 254.Google Scholar
  47. [47]
    V.G. Drinfeld, A New realization of Yangians and quantized affine algebras, Sov. Math. Dokl. 36 (1988)212.MathSciNetGoogle Scholar
  48. [48]
    V. Chari and A. Pressley, Fundamental representations of Yangians and singularities of R-matrices, J. Reigne Agnew. Math. 417 (1991) 87.MathSciNetMATHGoogle Scholar
  49. [49]
    L. Dolan, C.R. Nappi and E. Witten, A Relation between approaches to integrability in superconformal Yang-Mills theory, JHEP 10 (2003) 017 [hep-th/0308089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    L. Dolan, C.R. Nappi and E. Witten, Yangian symmetry in D = 4 superconformal Yang-Mills theory, hep-th/0401243 [INSPIRE].
  51. [51]
    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].MathSciNetADSGoogle Scholar
  52. [52]
    J. Drummond, J. Henn, G. Korchemsky and E. Sokatchev, The hexagon Wilson loop and the BDS ansatz for the six-gluon amplitude, Phys. Lett. B 662 (2008) 456 [arXiv:0712.4138] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473 [INSPIRE].
  54. [54]
    J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop integrals, JHEP 04 (2011) 083 [arXiv:1010.3679] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.PH-TH Division, CERNGenevaSwitzerland
  2. 2.LAPTH, Université de Savoie, CNRSAnnecy-le-Vieux CedexFrance
  3. 3.Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations