Advertisement

Journal of High Energy Physics

, 2011:38 | Cite as

Decoupling property of the supersymmetric Higgs sector with four doublets

  • Mayumi Aoki
  • Shinya Kanemura
  • Tetsuo Shindou
  • Kei Yagyu
Article

Abstract

In supersymmetric standard models with multi Higgs doublet fields, selfcoupling constants in the Higgs potential come only from the D-terms at the tree level. We investigate the decoupling property of additional two heavier Higgs doublet fields in the supersymmetric standard model with four Higgs doublets. In particular, we study how they can modify the predictions on the quantities well predicted in the minimal supersymmetric standard model (MSSM), when the extra doublet fields are rather heavy to be measured at collider experiments. The B-term mixing between these extra heavy Higgs bosons and the relatively light MSSM-like Higgs bosons can significantly change the predictions in the MSSM such as on the masses of MSSM-like Higgs bosons as well as the mixing angle for the two light CP-even scalar states. We first give formulae for deviations in the observables of the MSSM in the decoupling region for the extra two doublet fields. We then examine possible deviations in the Higgs sector numerically, and discuss their phenomenological implications.

Keywords

Higgs Physics Supersymmetric Standard Model 

References

  1. [1]
    S. Weinberg, Implications of dynamical symmetry breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].ADSGoogle Scholar
  2. [2]
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].ADSGoogle Scholar
  3. [3]
    E. Gildener, Gauge symmetry hierarchies, Phys. Rev. D 14 (1976) 1667 [INSPIRE].ADSGoogle Scholar
  4. [4]
    L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. ť Hooft, Recent developments in gauge theories. Proceedings of the NATO Advanced Summer Institute, Plenum Press, U.S.A. (1980).Google Scholar
  6. [6]
    A. Salam and J. Strathdee, On superfields and Fermi-Bose symmetry, Phys. Rev. D 11 (1975) 1521 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    M.T. Grisaru, W. Siegel and M. Roček, Improved methods for supergraphs, Nucl. Phys. B 159 (1979) 429 [INSPIRE].ADSGoogle Scholar
  8. [8]
    H. Goldberg, Constraint on the photino mass from cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].ADSGoogle Scholar
  9. [9]
    J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. Minkowski, mu → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, F. Nieuwenhuizen and D. Friedman eds., North Holland, Amsterdam The Netherlands (1979).Google Scholar
  12. [12]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on Unified Theories and the Baryon Number of the Universe, O. Sawada and A. Sugamoto eds., KEK, Japan (1979).Google Scholar
  13. [13]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Prog. Theor. Phys. 64 (1980) 1103 [INSPIRE].ADSGoogle Scholar
  14. [14]
    S.L. Glashow, The future of elementary particle physics, in the proceedings of the Cargése Summer Institute on Quarks and Leptons, M. Lévy et al. eds., Plenum Press, U.S.A. (1980).Google Scholar
  15. [15]
    R.N. Mohapatra and G. Senjanovic, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912ADSGoogle Scholar
  16. [16]
    J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE]ADSGoogle Scholar
  17. [17]
    T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE]ADSGoogle Scholar
  18. [18]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE]ADSGoogle Scholar
  19. [19]
    C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE]ADSGoogle Scholar
  20. [20]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSGoogle Scholar
  21. [21]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  22. [22]
    R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  23. [23]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Zee, Charged scalar field and quantum number violations, Phys. Lett. B 161 (1985) 141 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    K. Babu, Model of ’calculable’ Majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSGoogle Scholar
  28. [28]
    L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].ADSGoogle Scholar
  29. [29]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSGoogle Scholar
  31. [31]
    E. Ma, Supersymmetric model of radiative seesaw Majorana neutrino masses, Annales Fond. Broglie 31 (2006) 285 [hep-ph/0607142] [INSPIRE].Google Scholar
  32. [32]
    M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, An R-parity conserving radiative neutrino mass model without right-handed neutrinos, JHEP 07 (2010) 084 [Erratum ibid.1011 (2010)049] [arXiv:1005.5159] [INSPIRE].ADSGoogle Scholar
  33. [33]
    I. Affleck and M. Dine, A new mechanism for baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  35. [35]
    V. Kuzmin, V. Rubakov and M. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].ADSGoogle Scholar
  36. [36]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Baryogenesis at the weak phase transition, Nucl. Phys. B 349 (1991) 727 [INSPIRE].ADSGoogle Scholar
  37. [37]
    A.G. Cohen, D. Kaplan and A. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Quirós, Field theory at finite temperature and phase transitions, Helv. Phys. Acta 67 (1994)451 [INSPIRE].MathSciNetMATHGoogle Scholar
  39. [39]
    V. Rubakov and M. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [Phys. Usp. 39 (1996)461] [hep-ph/9603208] [INSPIRE].Google Scholar
  40. [40]
    Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].ADSGoogle Scholar
  41. [41]
    J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].ADSGoogle Scholar
  42. [42]
    H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].ADSGoogle Scholar
  43. [43]
    P.H. Chankowski, S. Pokorski and J. Rosiek, Charged and neutral supersymmetric Higgs boson masses: complete one loop analysis, Phys. Lett. B 274 (1992) 191 [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Brignole, Radiative corrections to the supersymmetric neutral Higgs boson masses, Phys. Lett. B 281 (1992) 284 [INSPIRE].ADSGoogle Scholar
  45. [45]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-J. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Dabelstein, The one loop renormalization of the MSSM Higgs sector and its application to the neutral scalar Higgs masses, Z. Phys. C 67 (1995) 495 [hep-ph/9409375] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Dabelstein, Fermionic decays of neutral MSSM Higgs bosons at the one loop level, Nucl. Phys. B 456 (1995) 25 [hep-ph/9503443] [INSPIRE].ADSGoogle Scholar
  48. [48]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Drees and M.M. Nojiri, One loop corrections to the Higgs sector in minimal supergravity models, Phys. Rev. D 45 (1992) 2482 [INSPIRE]ADSGoogle Scholar
  50. [50]
    M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M.S. Carena, M. Quirós and C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].ADSGoogle Scholar
  52. [52]
    H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].Google Scholar
  53. [53]
    R. Hempfling and A.H. Hoang, Two loop radiative corrections to the upper limit of the lightest Higgs boson mass in the minimal supersymmetric model, Phys. Lett. B 331 (1994) 99 [hep-ph/9401219] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].ADSGoogle Scholar
  56. [56]
    J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the lightest CP even Higgs boson in the minimal supersymmetric standard model, Nucl. Phys. B 586 (2000) 3 [hep-ph/0003246] [INSPIRE].ADSGoogle Scholar
  57. [57]
    G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].ADSGoogle Scholar
  58. [58]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79 [hep-ph/0206101] [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(alpha 2 (t)) two loop corrections to the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195 [hep-ph/0112177] [INSPIRE].ADSGoogle Scholar
  60. [60]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at O(alpha b α s ), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S.P. Martin, Three-loop corrections to the lightest Higgs scalar boson mass in supersymmetry, Phys. Rev. D 75 (2007) 055005 [hep-ph/0701051] [INSPIRE].ADSGoogle Scholar
  62. [62]
    R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Phys. Rev. Lett. 101 (2008) 039901] [arXiv:0803.0672] [INSPIRE].ADSGoogle Scholar
  63. [63]
    P. Kant, R. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].ADSGoogle Scholar
  64. [64]
    T. Moroi and Y. Okada, Upper bound of the lightest neutral Higgs mass in extended supersymmetric Standard Models, Phys. Lett. B 295 (1992) 73 [INSPIRE].ADSGoogle Scholar
  65. [65]
    U. Ellwanger, Radiative corrections to the neutral Higgs spectrum in supersymmetry with a gauge singlet, Phys. Lett. B 303 (1993) 271 [hep-ph/9302224] [INSPIRE].ADSGoogle Scholar
  66. [66]
    G.L. Kane, C.F. Kolda and J.D. Wells, Calculable upper limit on the mass of the lightest Higgs boson in any perturbatively valid supersymmetric theory, Phys. Rev. Lett. 70 (1993) 2686 [hep-ph/9210242] [INSPIRE].ADSGoogle Scholar
  67. [67]
    U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].MathSciNetADSGoogle Scholar
  68. [68]
    J. Espinosa and M. Quirós, Higgs triplets in the supersymmetric standard model, Nucl. Phys. B 384 (1992) 113 [INSPIRE].ADSGoogle Scholar
  69. [69]
    J. Espinosa and M. Quirós, On Higgs boson masses in nonminimal supersymmetric standard models, Phys. Lett. B 279 (1992) 92 [INSPIRE].ADSGoogle Scholar
  70. [70]
    O. Felix-Beltran, Higgs masses and coupling within an extension of the MSSM with Higgs triplets, Int. J. Mod. Phys. A 17 (2002) 465 [INSPIRE].ADSGoogle Scholar
  71. [71]
    J. Diaz-Cruz, J. Hernandez-Sanchez, S. Moretti and A. Rosado, Charged Higgs boson phenomenology in supersymmetric models with Higgs triplets, Phys. Rev. D 77 (2008) 035007 arXiv:0710.4169] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Di Chiara and K. Hsieh, Triplet extended supersymmetric standard model, Phys. Rev. D 78 (2008) 055016 [arXiv:0805.2623] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Kanemura, T. Shindou and K. Yagyu, Non-decoupling effects in supersymmetric Higgs sectors, Phys. Lett. B 699 (2011) 258 [arXiv:1009.1836] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].ADSGoogle Scholar
  75. [75]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].ADSGoogle Scholar
  76. [76]
    P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, Running into new territory in SUSY parameter space, JHEP 06 (2004) 032 [hep-ph/0404251] [INSPIRE].ADSGoogle Scholar
  77. [77]
    A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].MathSciNetADSGoogle Scholar
  78. [78]
    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].ADSGoogle Scholar
  79. [79]
    R.S. Gupta and J.D. Wells, Next generation Higgs bosons: theory, constraints and discoveryprospects at the Large Hadron Collider, Phys. Rev. D 81 (2010) 055012 [arXiv:0912.0267] [INSPIRE].ADSGoogle Scholar
  80. [80]
    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].ADSGoogle Scholar
  81. [81]
    G. Marshall and M. Sher, The supersymmetric leptophilic Higgs model, Phys. Rev. D 83 (2011) 015005 [arXiv:1011.3016] [INSPIRE].ADSGoogle Scholar
  82. [82]
    V.D. Barger, J. Hewett and R. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].ADSGoogle Scholar
  83. [83]
    Y. Grossman, Phenomenology of models with more than two Higgs doublets, Nucl. Phys. B 426 (1994) 355 [hep-ph/9401311] [INSPIRE].ADSGoogle Scholar
  84. [84]
    M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].ADSGoogle Scholar
  85. [85]
    S. Su and B. Thomas, The LHC discovery potential of a leptophilic Higgs, Phys. Rev. D 79 (2009) 095014 [arXiv:0903.0667] [INSPIRE].ADSGoogle Scholar
  86. [86]
    H.E. Logan and D. MacLennan, Charged Higgs phenomenology in the lepton-specific two Higgs doublet model, Phys. Rev. D 79 (2009) 115022 [arXiv:0903.2246] [INSPIRE].ADSGoogle Scholar
  87. [87]
    T. Cheng and M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets, Phys. Rev. D 35 (1987) 3484 [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Pich and P. Tuzon, Yukawa alignment in the two-Higgs-doublet model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].ADSGoogle Scholar
  89. [89]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  90. [90]
    J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μ → eγ and neutrinoless double β decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].ADSGoogle Scholar
  91. [91]
    H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett. B 82 (1979) 95 [INSPIRE].ADSGoogle Scholar
  92. [92]
    D. Kennedy and B. Lynn, Electroweak radiative corrections with an effective lagrangian: four fermion processes, Nucl. Phys. B 322 (1989) 1 [INSPIRE].ADSGoogle Scholar
  93. [93]
    M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].ADSGoogle Scholar
  94. [94]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  95. [95]
    G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].ADSGoogle Scholar
  96. [96]
    J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].ADSGoogle Scholar
  97. [97]
    M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [Yad. Fiz. 30 (1979) 1368] [INSPIRE].Google Scholar
  98. [98]
    M. Gavela, G. Girardi, C. Malleville and P. Sorba, A nonlinear R(ξ) gauge condition for the electroweak SU(2) × U(1) model, Nucl. Phys. B 193 (1981) 257 [INSPIRE].ADSGoogle Scholar
  99. [99]
    G.L. Kane, G.D. Kribs, S.P. Martin and J.D. Wells, Two photon decays of the lightest Higgs boson of supersymmetry at the LHC, Phys. Rev. D 53 (1996) 213 [hep-ph/9508265] [INSPIRE].ADSGoogle Scholar
  100. [100]
    A. Djouadi, V. Driesen, W. Hollik and J.I. Illana, The coupling of the lightest SUSY Higgs boson to two photons in the decoupling regime, Eur. Phys. J. C 1 (1998) 149 [hep-ph/9612362] [INSPIRE].ADSGoogle Scholar
  101. [101]
    G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha and C. Yuan, New physics effect on the Higgs selfcoupling, Phys. Lett. B 558 (2003) 157 [hep-ph/0211308] [INSPIRE].ADSGoogle Scholar
  103. [103]
    S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].ADSGoogle Scholar
  104. [104]
    S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].ADSGoogle Scholar
  105. [105]
    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].ADSGoogle Scholar
  106. [106]
    I. Ginzburg and I. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].ADSGoogle Scholar
  107. [107]
    S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [INSPIRE].ADSGoogle Scholar
  108. [108]
    M.S. Carena, M. Quirós and C. Wagner, Opening the window for electroweak baryogenesis, Phys. Lett. B 380 (1996) 81 [hep-ph/9603420] [INSPIRE].ADSGoogle Scholar
  109. [109]
    D. Delepine, J. Gerard, R. Gonzalez Felipe and J. Weyers, A light stop and electroweak baryogenesis, Phys. Lett. B 386 (1996) 183 [hep-ph/9604440] [INSPIRE].ADSGoogle Scholar
  110. [110]
    P. Huet and A.E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D 53 (1996) 4578 [hep-ph/9506477] [INSPIRE].ADSGoogle Scholar
  111. [111]
    B. de Carlos and J. Espinosa, The baryogenesis window in the MSSM, Nucl. Phys. B 503 (1997) 24 [hep-ph/9703212] [INSPIRE].ADSGoogle Scholar
  112. [112]
    M.S. Carena, M. Quirós, A. Riotto, I. Vilja and C. Wagner, Electroweak baryogenesis and low-energy supersymmetry, Nucl. Phys. B 503 (1997) 387 [hep-ph/9702409] [INSPIRE].ADSGoogle Scholar
  113. [113]
    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 1: thin wall regime, Phys. Rev. D 53 (1996) 2930 [hep-ph/9410281] [INSPIRE].ADSGoogle Scholar
  114. [114]
    M. Joyce, T. Prokopec and N. Turok, Nonlocal electroweak baryogenesis. Part 2: the classical regime, Phys. Rev. D 53 (1996) 2958 [hep-ph/9410282] [INSPIRE].ADSGoogle Scholar
  115. [115]
    J.M. Cline, K. Kainulainen and A.P. Vischer, Dynamics of two Higgs doublet CP-violation and baryogenesis at the electroweak phase transition, Phys. Rev. D 54 (1996) 2451 [hep-ph/9506284] [INSPIRE].ADSGoogle Scholar
  116. [116]
    J.M. Cline and P.-A. Lemieux, Electroweak phase transition in two Higgs doublet models, Phys. Rev. D 55 (1997) 3873 [hep-ph/9609240] [INSPIRE].ADSGoogle Scholar
  117. [117]
    L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP 11 (2006) 038 [hep-ph/0605242] [INSPIRE].ADSGoogle Scholar
  118. [118]
    B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].ADSGoogle Scholar
  119. [119]
    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].ADSGoogle Scholar
  120. [120]
    M. Vysotsky, Strong interaction corrections to semiweak decays: calculation of the V → Hγ decay rate with α s accuracy, Phys. Lett. B 97 (1980) 159 [INSPIRE].ADSGoogle Scholar
  121. [121]
    M. Lindner, Implications of triviality for the standard model, Z. Phys. C 31 (1986) 295 [INSPIRE].ADSGoogle Scholar
  122. [122]
    S. Kanemura and C. Yuan, Testing supersymmetry in the associated production of CP odd and charged Higgs bosons, Phys. Lett. B 530 (2002) 188 [hep-ph/0112165] [INSPIRE].ADSGoogle Scholar
  123. [123]
    Q.-H. Cao, S. Kanemura and C. Yuan, Associated production of CP odd and charged Higgs bosons at hadron colliders, Phys. Rev. D 69 (2004) 075008 [hep-ph/0311083] [INSPIRE].ADSGoogle Scholar
  124. [124]
    K. Assamagan and Y. Coadou, Prospects for the determination of the charged Higgs mass and tan β with the ATLAS detector at the Large Hadron Collider, Acta Phys. Polon. B 33 (2002)1347 [INSPIRE].ADSGoogle Scholar
  125. [125]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].ADSGoogle Scholar
  126. [126]
    F. Gianotti and M. Pepe-Altarelli, Precision physics at the LHC, Nucl. Phys. Proc. Suppl. 89 (2000) 177 [hep-ex/0006016] [INSPIRE].ADSGoogle Scholar
  127. [127]
    P. Garcia-Abia and W. Lohmann, Measurement of the Higgs cross-section and mass with linear colliders, Eur. Phys. J. direct C 2 (2000) 2 [hep-ex/9908065] [INSPIRE].Google Scholar
  128. [128]
    P. Garcia-Abia, W. Lohmann and A. Raspereza, Prospects for the measurement of the Higgs boson mass with a linear e + e collider, Eur. Phys. J. C 44 (2005) 481 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Mayumi Aoki
    • 1
  • Shinya Kanemura
    • 2
  • Tetsuo Shindou
    • 3
  • Kei Yagyu
    • 2
  1. 1.Institute for Theoretical PhysicsKanazawa UniversityKanazawaJapan
  2. 2.Department of PhysicsUniversity of ToyamaToyamaJapan
  3. 3.Division of Liberal ArtsKogakuin UniversityTokyoJapan

Personalised recommendations