Advertisement

Journal of High Energy Physics

, 2011:34 | Cite as

Linear sigma models with torsion

  • Callum Quigley
  • Savdeep Sethi
Article

Abstract

Gauged linear sigma models with (0, 2) supersymmetry allow a larger choice of couplings than models with (2, 2) supersymmetry. We use this freedom to find a fully linear construction of torsional heterotic compactifications, including models with branes. As a non-compact example, we describe a family of metrics which correspond to deformations of the heterotic conifold by turning on H-flux. We then describe compact models which are gauge-invariant only at the quantum level. Our construction gives a generalization of symplectic reduction. The resulting spaces are non-Kähler analogues of familiar toric spaces like complex projective space. Perturbatively conformal models can be constructed by considering intersections.

K eywords

Flux compactifications Superstrings and Heterotic Strings Conformal Field Models in String Theory Superstring Vacua 

References

  1. [1]
    A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    C. Hull, Compactifications of the heterotic superstring, Phys. Lett. B 178 (1986) 357 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. Goldstein and S. Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure, Commun. Math. Phys. 251 (2004) 65 [hep-th/0212307] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  5. [5]
    K. Becker and S. Sethi, Torsional heterotic geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    K. Becker and K. Dasgupta, Heterotic strings with torsion, JHEP 11 (2002) 006 [hep-th/0209077] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G. Lopes Cardoso et al., Non-Kähler string backgrounds and their five torsion classes, Nucl. Phys. B 652 (2003) 5 [hep-th/0211118] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Becker, M. Becker, K. Dasgupta and P.S. Green, Compactifications of heterotic theory on non-Kähler complex manifolds. 1., JHEP 04 (2003) 007 [hep-th/0301161] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    K. Becker, M. Becker, P.S. Green, K. Dasgupta and E. Sharpe, Compactifications of heterotic strings on nonKähler complex manifolds. 2., Nucl. Phys. B 678 (2004) 19 [hep-th/0310058] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Becker and L.-S. Tseng, Heterotic flux compactifications and their moduli, Nucl. Phys. B 741 (2006)162 [hep-th/0509131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampere equation, J. Diff. Geom. 78 (2009) 369 [hep-th/0604063] [INSPIRE].MathSciNetGoogle Scholar
  13. [13]
    K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory, Nucl. Phys. B 751 (2006) 108 [hep-th/0604137] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    K. Dasgupta et al., Gauge-gravity dualities, dipoles and new non-Kähler manifolds, Nucl. Phys. B 755 (2006) 21 [hep-th/0605201] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T. Kimura and P. Yi, Comments on heterotic flux compactifications, JHEP 07 (2006) 030 [hep-th/0605247] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    A. Knauf, Geometric transitions on non-Kähler manifolds, Fortsch. Phys. 55 (2007) 5 [hep-th/0605283] [INSPIRE].MathSciNetMATHCrossRefADSGoogle Scholar
  17. [17]
    S. Kim and P. Yi, A heterotic flux background and calibrated five-branes, JHEP 11 (2006) 040 [hep-th/0607091] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S. Sethi, A note on heterotic dualities via M-theory, Phys. Lett. B 659 (2008) 385 [arXiv:0707.0295] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    M. Becker, L.-S. Tseng and S.-T. Yau, Heterotic Kähler/non-Kähler transitions, arXiv:0706.4290 [INSPIRE].
  20. [20]
    M. Cvetič, T. Liu and M.B. Schulz, Twisting K3 × T 2 orbifolds, JHEP 09 (2007) 092 [hep-th/0701204] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.-X. Fu, L.-S. Tseng and S.-T. Yau, Local heterotic torsional models, Commun. Math. Phys. 289 (2009) 1151 [arXiv:0806.2392] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  22. [22]
    J. Evslin and R. Minasian, Topology change from (heterotic) Narain T-duality, Nucl. Phys. B 820 (2009) 213 [arXiv:0811.3866] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D. Andriot, R. Minasian and M. Petrini, Flux backgrounds from Twists, JHEP 12 (2009) 028 [arXiv:0903.0633] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Adams and J.M. Lapan, Computing the spectrum of a heterotic flux vacuum, JHEP 03 (2011) 045 [arXiv:0908.4294] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    A. Adams, Orbifold phases of heterotic flux vacua, arXiv:0908.2994 [INSPIRE].
  26. [26]
    A. Adams and D. Guarrera, Heterotic flux vacua from hybrid linear models, arXiv:0902.4440 [INSPIRE].
  27. [27]
    J. Louis, D. Martinez-Pedrera and A. Micu, Heterotic compactifications on SU(2)-structure backgrounds, JHEP 09 (2009) 012 [arXiv:0907.3799] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    K. Becker, C. Bertinato, Y.-C. Chung and G. Guo, Supersymmetry breaking, heterotic strings and fluxes, Nucl. Phys. B 823 (2009) 428 [arXiv:0904.2932] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L. Carlevaro and D. Israel, Heterotic resolved conifolds with torsion, from supergravity to CFT, JHEP 01 (2010) 083 [arXiv:0910.3190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    J. McOrist, D.R. Morrison and S. Sethi, Geometries, non-geometries and fluxes, arXiv:1004.5447 [INSPIRE].
  31. [31]
    I.V. Melnikov and R. Minasian, Heterotic σ-models with N = 2 space-time supersymmetry, JHEP 09 (2011) 065 [arXiv:1010.5365] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Gutowski and G. Papadopoulos, Heterotic horizons, Monge-Ampere equation and del Pezzo surfaces, JHEP 10 (2010) 084 [arXiv:1003.2864] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    F. Chen, K. Dasgupta, P. Franche, S. Katz and R. Tatar, Supersymmetric configurations, geometric transitions and new non-Kähler manifolds, Nucl. Phys. B 852 (2011) 553 [arXiv:1007.5316] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    B. Andreas and M. Garcia-Fernandez, Heterotic non-Kähler geometries via polystable bundles on Calabi-Yau threefolds, arXiv:1011.6246 [INSPIRE].
  35. [35]
    D. Andriot, Heterotic string from a higher dimensional perspective, arXiv:1102.1434 [INSPIRE].
  36. [36]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    B.R. Greene, C. Vafa and N. Warner, Calabi-Yau manifolds and renormalization group flows, Nucl. Phys. B 324 (1989) 371 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    D.R. Morrison and M. Plesser, Towards mirror symmetry as duality for two-dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl. 46 (1996) 177 [hep-th/9508107] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  39. [39]
    A. Adams, M. Ernebjerg and J.M. Lapan, Linear models for flux vacua, Adv. Theor. Math. Phys. 12 (2008) 817 [hep-th/0611084] [INSPIRE].MathSciNetMATHGoogle Scholar
  40. [40]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetric gauge theories and electric-magnetic duality, Nucl. Phys. Proc. Suppl. 45BC (1996) 1 [hep-th/9509066] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  41. [41]
    M. Blaszczyk, S. Nibbelink Groot and F. Ruehle, Green-Schwarz mechanism in heterotic (2, 0) gauged linear σ-models: torsion and N S5 branes, JHEP 08 (2011) 083 [arXiv:1107.0320] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J. McOrist, The revival of (0, 2) linear σ-models, Int. J. Mod. Phys. A 26 (2011) 1 [arXiv:1010.4667] [INSPIRE].MathSciNetADSGoogle Scholar
  43. [43]
    A. Adams, A. Basu and S. Sethi, (0, 2) duality, Adv. Theor. Math. Phys. 7 (2004) 865 [hep-th/0309226] [INSPIRE].MathSciNetGoogle Scholar
  44. [44]
    A. Butti, M. Graña, R. Minasian, M. Petrini and A. Zaffaroni, The baryonic branch of Klebanov-Strassler solution: a supersymmetric family of SU(3) structure backgrounds, JHEP 03 (2005) 069 [hep-th/0412187] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    R. Casero, C. Núñez and A. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J. Maldacena and D. Martelli, The unwarped, resolved, deformed conifold: fivebranes and the baryonic branch of the Klebanov-Strassler theory, JHEP 01 (2010) 104 [arXiv:0906.0591] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  47. [47]
    D. Martelli and J. Sparks, Non-Kähler heterotic rotations, arXiv:1010.4031 [INSPIRE].
  48. [48]
    H. Itoyama, V. Nair and H.-C. Ren, Supersymmetry anomalies: further results, Phys. Lett. B 168 (1986) 78 [INSPIRE].
  49. [49]
    H. Itoyama, V. Nair and H.-c. Ren, Supersymmetry anomalies and some aspects of renormalization, Nucl. Phys. B 262 (1985) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    D.S. Hwang, Supersymmetry anomaly in two-dimensions, Nucl. Phys. B 267 (1986) 349 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    J. Distler, Notes on (0, 2) superconformal field theories, hep-th/9502012 [INSPIRE].
  52. [52]
    K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA

Personalised recommendations