Journal of High Energy Physics

, 2011:31 | Cite as

Hidden SUSY at the LHC: the light higgsino-world scenario and the role of a lepton collider

  • Howard Baer
  • Vernon Barger
  • Peisi Huang


While the SUSY flavor, CP and gravitino problems seem to favor a very heavy spectrum of matter scalars, fine-tuning in the electroweak sector prefers low values of superpotential mass μ. In the limit of low μ, the two lightest neutralinos and light chargino are higgsino-like. The light charginos and neutralinos may have large production cross sections at LHC, but since they are nearly mass degenerate, there is only small energy release in three-body sparticle decays. Possible dilepton and trilepton signatures are difficult to observe after mild cuts due to the very soft pT spectrum of the final state isolated leptons. Thus, the higgsino-world scenario can easily elude standard SUSY searches at the LHC. It should motivate experimental searches to focus on dimuon and trimuon production at the very lowest pT (μ) values possible. If the neutralino relic abundance is enhanced via non-standard cosmological dark matter production, then there exist excellent prospects for direct or indirect detection of higgsino-like WIMPs. While the higgsino-world scenario may easily hide from LHC SUSY searches, a linear e+e collider or a muon collider operating in the \( \sqrt {s} \sim 0.{5} - {1}\;{\text{TeV}} \) range would be able to easily access the chargino and neutralino pair production reactions.


Supersymmetry Phenomenology 


  1. [1]
    S. Dimopoulos and H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Sakai, Naturalness in supersymmetric guts, Z. Phys. C 11 (1981) 153 [INSPIRE].ADSGoogle Scholar
  3. [3]
    X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).Google Scholar
  4. [4]
    M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles, World Scientific, Singapore (2004).Google Scholar
  5. [5]
    P. Binétruy, Supersymmetry, Oxford University Press, Oxford U.K. (2006).MATHGoogle Scholar
  6. [6]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  7. [7]
    F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Murayama and A. Pierce, Not even decoupling can save minimal supersymmetric SU(5), Phys. Rev. D 65 (2002) 055009 [hep-ph/0108104] [INSPIRE].ADSGoogle Scholar
  9. [9]
    S. Weinberg, Cosmological constraints on the scale of supersymmetry breaking, Phys. Rev. Lett. 48 (1982) 1303 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Khlopov and A.D. Linde, Is it easy to save the gravitino?, Phys. Lett. B 138 (1984) 265 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].ADSGoogle Scholar
  12. [12]
    M. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Buchmüller and M. Plümacher, Baryon asymmetry and neutrino mixing, Phys. Lett. B 389 (1996) 73 [hep-ph/9608308] [INSPIRE].ADSGoogle Scholar
  14. [14]
    W. Buchmüller and M. Plümacher, Neutrino masses and the baryon asymmetry, Int. J. Mod. Phys. A 15 (2000) 5047 [hep-ph/0007176] [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Giudice, A. Notari, M. Raidal, A. Riotto and A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM, Nucl. Phys. B 685 (2004) 89 [hep-ph/0310123] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Buchmüller, R. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic microwave background, matter–antimatter asymmetry and neutrino masses, Nucl. Phys. B 643 (2002) 367 [Erratum ibid. B 793 (2008) 362] [hep-ph/0205349] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0205349] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  20. [20]
    W. Buchmüller, P. Di Bari and M. Plümacher, Some aspects of thermal leptogenesis, New J. Phys. 6 (2004) 105.CrossRefGoogle Scholar
  21. [21]
    G. Lazarides and Q. Shafi, Origin of matter in the inflationary cosmology, Phys. Lett. B 258 (1991) 305 [INSPIRE].ADSGoogle Scholar
  22. [22]
    K. Kumekawa, T. Moroi and T. Yanagida, Flat potential for inflaton with a discrete R invariance in supergravity, Prog. Theor. Phys. 92 (1994) 437 [hep-ph/9405337] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Asaka, K. Hamaguchi, M. Kawasaki and T. Yanagida, Leptogenesis in inflaton decay, Phys. Lett. B 464 (1999) 12 [hep-ph/9906366] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Giudice, M. Peloso, A. Riotto and I. Tkachev, Production of massive fermions at preheating and leptogenesis, JHEP 08 (1999) 014 [hep-ph/9905242] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].ADSGoogle Scholar
  26. [26]
    A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. Baer, S. Kraml, A. Lessa, S. Sekmen and X. Tata, Effective supersymmetry at the LHC, JHEP 10 (2010) 018 [arXiv:1007.3897] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang nucleosynthesis and gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  29. [29]
    H. Baer and X. Tata, Weak scale supersymmetry: from superfields to scattering events, Cambridge University Press, Cambridge U.K. (2006).CrossRefGoogle Scholar
  30. [30]
    R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G.W. Anderson and D.J. Castano, Measures of fine tuning, Phys. Lett. B 347 (1995) 300 [hep-ph/9409419] [INSPIRE].ADSGoogle Scholar
  32. [32]
    K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G.L. Kane, A higgsino-LSP world, in Perspectives on supersymmetry, G.L. Kane ed., World Scientific, Singapore (1998).CrossRefGoogle Scholar
  36. [36]
    G.L. Kane and J.D. Wells, Higgsino cold dark matter motivated by collider data, Phys. Rev. Lett. 76 (1996) 4458 [hep-ph/9603336] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.R. Ellis and K.A. Olive, How finely tuned is supersymmetric dark matter?, Phys. Lett. B 514 (2001) 114 [hep-ph/0105004] [INSPIRE].ADSGoogle Scholar
  39. [39]
    H. Baer and A.D. Box, Fine-tuning favors mixed axion/axino cold dark matter over neutralinos in the minimal supergravity model, Eur. Phys. J. C 68 (2010) 523 [arXiv:0910.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    H. Baer, A.D. Box and H. Summy, Neutralino versus axion/axino cold dark matter in the 19 parameter SUGRA model, JHEP 10 (2010) 023 [arXiv:1005.2215] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    B.S. Acharya, G. Kane, S. Watson and P. Kumar, A non-thermal WIMP miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].ADSGoogle Scholar
  42. [42]
    T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].ADSGoogle Scholar
  44. [44]
    G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev. D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].ADSGoogle Scholar
  45. [45]
    R. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].ADSGoogle Scholar
  52. [52]
    A.P. Zhitnitskii, On possible suppression of the axion hadron interactions (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].Google Scholar
  53. [53]
    K.-Y. Choi, J.E. Kim, H.M. Lee and O. Seto, Neutralino dark matter from heavy axino decay, Phys. Rev. D 77 (2008) 123501 [arXiv:0801.0491] [INSPIRE].ADSGoogle Scholar
  54. [54]
    H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M. Bolz, A. Brandenburg and W. Buchmüller, Thermal production of gravitinos, Nucl. Phys. B 606 (2001) 518 [Erratum ibid. B 790 (2008) 336–337] [hep-ph/0012052] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    J. Pradler and F.D. Steffen, Thermal gravitino production and collider tests of leptogenesis, Phys. Rev. D 75 (2007) 023509 [hep-ph/0608344] [INSPIRE].ADSGoogle Scholar
  57. [57]
    V.S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D 75 (2007) 075011 [hep-ph/0701104] [INSPIRE].ADSGoogle Scholar
  58. [58]
    K. Kohri, M. Yamaguchi and J. Yokoyama, Neutralino dark matter from heavy gravitino decay, Phys. Rev. D 72 (2005) 083510 [hep-ph/0502211] [INSPIRE].ADSGoogle Scholar
  59. [59]
    T. Asaka, S. Nakamura and M. Yamaguchi, Gravitinos from heavy scalar decay, Phys. Rev. D 74 (2006) 023520 [hep-ph/0604132] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Endo, F. Takahashi and T. Yanagida, Inflaton decay in supergravity, Phys. Rev. D 76 (2007) 083509 [arXiv:0706.0986] [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    H. Baer, R. Dermisek, S. Rajagopalan and H. Summy, Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB, JCAP 07 (2010) 014 [arXiv:1004.3297] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Neutralino cold dark matter in a one parameter extension of the minimal supergravity model, Phys. Rev. D 71 (2005) 095008 [hep-ph/0412059] [INSPIRE].ADSGoogle Scholar
  65. [65]
    H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    H. Baer and X. Tata, Probing charginos and neutralinos beyond the reach of LEP at the Tevatron collider, Phys. Rev. D 47 (1993) 2739 [INSPIRE].ADSGoogle Scholar
  67. [67]
    H. Baer, M. Drees, F. Paige, P. Quintana and X. Tata, Trilepton signal for supersymmetry at the Fermilab Tevatron revisited, Phys. Rev. D 61 (2000) 095007 [hep-ph/9906233] [INSPIRE].ADSGoogle Scholar
  68. [68]
    V.D. Barger and C. Kao, Trilepton signature of minimal supergravity at the upgraded Tevatron, Phys. Rev. D 60 (1999) 115015 [hep-ph/9811489] [INSPIRE].ADSGoogle Scholar
  69. [69]
    K.T. Matchev and D.M. Pierce, New backgrounds in trilepton, dilepton and dilepton plus τ jet SUSY signals at the Tevatron, Phys. Lett. B 467 (1999) 225 [hep-ph/9907505] [INSPIRE].ADSGoogle Scholar
  70. [70]
    SUGRA Working Group collaboration, V. Barger et al., Report of the SUGRA working group for Run II of the Tevatron, hep-ph/0003154 [INSPIRE].
  71. [71]
    F.E. Paige, S.D. Protopopescu, H. Baer and X. Tata, ISAJET 7.69: a Monte Carlo event generator for pp, pp and e + e reactions, hep-ph/0312045 [INSPIRE].
  72. [72]
    H. Baer, J. Ferrandis, S. Kraml and W. Porod, On the treatment of threshold effects in SUSY spectrum computations, Phys. Rev. D 73 (2006) 015010 [hep-ph/0511123] [INSPIRE].ADSGoogle Scholar
  73. [73]
    H. Baer, V. Barger, A. Lessa and X. Tata, Capability of LHC to discover supersymmetry with \( \sqrt {s} = { }7TeV{ }and{ }1{ }f{b^{{ - 1}}} \) , JHEP 06 (2010) 102 [arXiv:1004.3594] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H. Baer, X. Tata and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D 45 (1992) 142 [INSPIRE].ADSGoogle Scholar
  75. [75]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider: multi-jet plus missing energy channel, Phys. Rev. D 52 (1995) 2746 [hep-ph/9503271] [INSPIRE].ADSGoogle Scholar
  76. [76]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Signals for minimal supergravity at the CERN Large Hadron Collider. 2: multi-lepton channels, Phys. Rev. D 53 (1996) 6241 [hep-ph/9512383] [INSPIRE].ADSGoogle Scholar
  77. [77]
    H. Baer, C.-H. Chen, M. Drees, F. Paige and X. Tata, Probing minimal supergravity at the CERN LHC for large tan β, Phys. Rev. D 59 (1999) 055014 [hep-ph/9809223] [INSPIRE].ADSGoogle Scholar
  78. [78]
    H. Baer, C. Balázs, A. Belyaev, T. Krupovnickas and X. Tata, Updated reach of the CERN LHC and constraints from relic density, b → sγ and a(μ) in the mSUGRA model, JHEP 06 (2003) 054 [hep-ph/0304303] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Abdullin and F. Charles, Search for SUSY in (leptons +) jets + E miss (T ) final states, Nucl. Phys. B 547 (1999) 60 [hep-ph/9811402] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    CMS collaboration, S. Abdullin et al., Discovery potential for supersymmetry in CMS, J. Phys. G 28 (2002) 469 [hep-ph/9806366] [INSPIRE].ADSGoogle Scholar
  81. [81]
    B. Allanach, J. Hetherington, M.A. Parker and B. Webber, Naturalness reach of the Large Hadron Collider in minimal supergravity, JHEP 08 (2000) 017 [hep-ph/0005186] [INSPIRE].ADSGoogle Scholar
  82. [82]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].
  83. [83]
    H. Baer, J.R. Ellis, G. Gelmini, D.V. Nanopoulos and X. Tata, Squark decays into gauginos at the pp collider, Phys. Lett. B 161 (1985) 175 [INSPIRE].ADSGoogle Scholar
  84. [84]
    G. Gamberini, Heavy gluino and squark decays at pp collider, Z. Phys. C 30 (1986) 605 [INSPIRE].ADSGoogle Scholar
  85. [85]
    H. Baer, V.D. Barger, D. Karatas and X. Tata, Detecting gluinos at hadron supercolliders, Phys. Rev. D 36 (1987) 96 [INSPIRE].ADSGoogle Scholar
  86. [86]
    H. Baer and T. Krupovnickas, Radiative neutralino decay in supersymmetric models, JHEP 09 (2002) 038 [hep-ph/0208277] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 100 live days of XENON100 data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    H. Baer, A. Belyaev, T. Krupovnickas and J. O’Farrill, Indirect, direct and collider detection of neutralino dark matter, JCAP 08 (2004) 005 [hep-ph/0405210] [INSPIRE].ADSGoogle Scholar
  89. [89]
    H. Baer, E.-K. Park and X. Tata, Collider, direct and indirect detection of supersymmetric dark matter, New J. Phys. 11 (2009) 105024 [arXiv:0903.0555] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    H. Baer and S. Profumo, Low energy antideuterons: shedding light on dark matter, JCAP 12 (2005) 008 [astro-ph/0510722] [INSPIRE].ADSGoogle Scholar
  91. [91]
    Fermi LAT collaboration, I. Kuznetsova and J. Rafelski, Electron-positron plasma drop formed by ultra-intense laser pulses, arXiv:1109.3546 [INSPIRE].
  92. [92]
    K. Rajagopal, M.S. Turner and F. Wilczek, Cosmological implications of axinos, Nucl. Phys. B 358 (1991) 447 [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    L. Covi, H.-B. Kim, J.E. Kim and L. Roszkowski, Axinos as dark matter, JHEP 05 (2001) 033 [hep-ph/0101009] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    H. Baer, A.D. Box and H. Summy, Mainly axion cold dark matter in the minimal supergravity model, JHEP 08 (2009) 080 [arXiv:0906.2595] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    F.D. Steffen, Dark matter candidates-axions, neutralinos, gravitinos and axinos, Eur. Phys. J. C 59 (2009) 557 [arXiv:0811.3347] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    H. Baer, C.-h. Chen, F. Paige and X. Tata, Trileptons from chargino-neutralino production at the CERN Large Hadron Collider, Phys. Rev. D 50 (1994) 4508 [hep-ph/9404212] [INSPIRE].ADSGoogle Scholar
  98. [98]
    H. Baer, T. Krupovnickas, S. Profumo and P. Ullio, Model independent approach to focus point supersymmetry: from dark matter to collider searches, JHEP 10 (2005) 020 [hep-ph/0507282] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  100. [100]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    J. Conway, PGS — Pretty Good Simulation, online at˜conway/research/software/pgs/pgs4-general.htm.
  102. [102]
    H. Baer, K. Hagiwara and X. Tata, Gauginos as a signal for supersymmetry at pp colliders, Phys. Rev. D 35 (1987) 1598 [INSPIRE].ADSGoogle Scholar
  103. [103]
    H. Baer, D.D. Karatas and X. Tata, Gluino and squark production in association with gauginos at hadron supercolliders, Phys. Rev. D 42 (1990) 2259 [INSPIRE].ADSGoogle Scholar
  104. [104]
    H. Baer, C. Kao and X. Tata, Aspects of chargino-neutralino production at the Tevatron collider, Phys. Rev. D 48 (1993) 5175 [hep-ph/9307347] [INSPIRE].ADSGoogle Scholar
  105. [105]
    I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist and W. Yao, Precision SUSY measurements at CERN LHC, Phys. Rev. D 55 (1997) 5520 [hep-ph/9610544] [INSPIRE].ADSGoogle Scholar
  106. [106]
    H. Bachacou, I. Hinchliffe and F.E. Paige, Measurements of masses in SUGRA models at CERN LHC, Phys. Rev. D 62 (2000) 015009 [hep-ph/9907518] [INSPIRE].ADSGoogle Scholar
  107. [107]
    ATLAS collaboration, Expected performance of the ATLAS experiment: detector, trigger and physics, CERN-OPEN-2008-020 (2009).Google Scholar
  108. [108]
    CMS Collaboration, Physics technical design report. Volume II: physics performance, CERN-LHCC-2006-021 (2006).Google Scholar
  109. [109]
    H. Baer, R.B. Munroe and X. Tata, Supersymmetry studies at future linear e + e colliders, Phys. Rev. D 54 (1996) 6735 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9606325] [INSPIRE].ADSGoogle Scholar
  110. [110]
    H. Baer, A. Belyaev, T. Krupovnickas and X. Tata, Linear collider capabilities for supersymmetry in dark matter allowed regions of the mSUGRA model, JHEP 02 (2004) 007 hep-ph/0311351] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Dept. of Physics and AstronomyUniversity of OklahomaNormanUSA
  2. 2.Dept. of PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations