Journal of High Energy Physics

, 2011:27 | Cite as

Improving the sensitivity of Higgs boson searches in the golden channel

  • James S. Gainer
  • Kunal Kumar
  • Ian Low
  • Roberto Vega-Morales

A bstract

Leptonic decays of the Higgs boson in the ZZ (*) channel yield what is known as the golden channel due to its clean signature and good total invariant mass resolution. In addition, the full kinematic distribution of the decay products can be reconstructed, which, nonetheless, is not taken into account in traditional search strategy relying only on measurements of the total invariant mass. In this work we implement a type of multivariate analysis known as the matrix element method, which exploits differences in the full production and decay matrix elements between the Higgs boson and the dominant irreducible background from \( q\bar{q} \to Z{Z^{{( * )}}} \). Analytic expressions of the differential distributions for both the signal and the background are also presented. We perform a study for the Large Hadron Collider at \( \sqrt {s} = 7\,\,{\text{TeV}} \) for Higgs masses between 175 and 350 GeV. We find that, with an integrated luminosity of 2.5 fb−1 or higher, improvements in the order of 10–20% could be obtained for both discovery significance and exclusion limits in the high mass region, where the differences in the angular correlations between signal and background are most pronounced.

K eywords

Higgs Physics Standard Model 


  1. [1]
    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    CDF, D0 collaborations, Tevatron New Phenomena, Higgs Working Group, Combined CDF and D0 upper limits on standard model Higgs boson production with up to 8.6 fb −1 of Data, arXiv:1107.5518 [INSPIRE].
  3. [3]
    ATLAS collaboration, Combined standard model Higgs boson searches in pp collisions at \( \sqrt {s} = 7\,\,TeV \) with the ATLAS experiment at the LHC, ATLAS-CONF-2011-112 (2011).
  4. [4]
    CMS collaboration, Search for standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\,\,TeV \), CMS-PAS-HIG-11-011 (2011).
  5. [5]
    P.C. Bhat, Advanced analysis methods in particle physics, FERMILAB-CONF-2001-287 (2001), hep-ex/0106099.
  6. [6]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 2: mass spectra for 2 → 2 processes, J. Phys. Soc. Jap. 60 (1991) 836 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Kondo, T. Chikamatsu and S. Kim, Dynamical likelihood method for reconstruction of events with missing momentum. 3: analysis of a CDF high p T eμ event as \( t\bar{t} \) production, J. Phys. Soc. Jap. 62 (1993) 1177 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Dalitz and G.R. Goldstein, Analysis of top-antitop production and dilepton decay events and the top quark mass, Phys. Lett. B 287 (1992) 225 [INSPIRE].ADSGoogle Scholar
  11. [11]
    G.R. Goldstein, K. Sliwa and R. Dalitz, On observing top quark production at the Tevatron, Phys. Rev. D 47 (1993) 967 [hep-ph/9205246] [INSPIRE].ADSGoogle Scholar
  12. [12]
    R. Dalitz and G.R. Goldstein, Where is top?, Int. J. Mod. Phys. A 9 (1994) 635 [hep-ph/9308345] [INSPIRE].ADSGoogle Scholar
  13. [13]
    M.F. Canelli, Helicity of the W boson in single-lepton tt events, FERMILAB-THESIS-2003-22 (2003).Google Scholar
  14. [14]
    K. Kondo, Dynamical likelihood method and top quark mass measurement at CDF, J. Phys. Conf. Ser. 53 (2006) 202 [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    P. Artoisenet and O. Mattelaer, MadWeight: automatic event reweighting with matrix elements, PoS(CHARGED2008)025.
  16. [16]
    J. Alwall, A. Freitas and O. Mattelaer, Measuring sparticles with the matrix element, AIP Conf. Proc. 1200 (2010) 442 [arXiv:0910.2522] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Alwall, A. Freitas and O. Mattelaer, The matrix element method and QCD radiation, Phys. Rev. D 83 (2011) 074010 [arXiv:1010.2263] [INSPIRE].ADSGoogle Scholar
  19. [19]
    C.-Y. Chen and A. Freitas, General analysis of signals with two leptons and missing energy at the Large Hadron Collider, JHEP 02 (2011) 002 [arXiv:1011.5276] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Volobouev, Matrix element method in HEP: transfer functions, efficiencies and likelihood normalization, arXiv:1101.2259 [INSPIRE].
  21. [21]
    D0 collaboration, B. Abbott et al., Measurement of the top quark mass in the dilepton channel, Phys. Rev. D 60 (1999) 052001 [hep-ex/9808029] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D0 collaboration, V. Abazov et al., A precision measurement of the mass of the top quark, Nature 429 (2004) 638 [hep-ex/0406031] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    CDF collaboration, A. Abulencia et al., Top quark mass measurement from dilepton events at CDF II with the matrix-element method, Phys. Rev. D 74 (2006) 032009 [hep-ex/0605118] [INSPIRE].ADSGoogle Scholar
  24. [24]
    D0 collaboration, V. Abazov et al., Evidence for production of single top quarks, Phys. Rev. D 78 (2008) 012005 [arXiv:0803.0739] [INSPIRE].ADSGoogle Scholar
  25. [25]
    CDF collaboration, T. Aaltonen et al., Measurement of the single top quark production cross section at CDF, Phys. Rev. Lett. 101 (2008) 252001 [arXiv:0809.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    F. Fiedler, A. Grohsjean, P. Haefner and P. Schieferdecker, The matrix element method and its application in measurements of the top quark mass, Nucl. Instrum. Meth. A 624 (2010) 203 [arXiv:1003.1316] [INSPIRE].ADSGoogle Scholar
  27. [27]
    CDF collaboration, T. Aaltonen et al., Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector, Phys. Rev. D (2011) [arXiv:1108.1601] [INSPIRE].
  28. [28]
    CMS collaboration, Search for the Higgs boson in the fully leptonic W + W final state, CMS-PAS-HIG-11-003 (2011).
  29. [29]
    CMS collaboration, Search for a standard model Higgs boson in the decay channel \( H \to Z{Z^{{( * )}}} \to {4}\ell \), CMS-PAS-HIG-11-004 (2011).
  30. [30]
    T. Matsuura and J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].Google Scholar
  31. [31]
    S. Choi, . Miller, D.J., M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H \to ZZ \to l_1^{ + }l_1^{ - }l_2^{ + }l_2^{ - } \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].ADSGoogle Scholar
  33. [33]
    W.-Y. Keung, I. Low and J. Shu, Landau-Yang theorem and decays of a Z boson into two Z bosons, Phys. Rev. Lett. 101 (2008) 091802 [arXiv:0806.2864] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    Q.-H. Cao, C. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].ADSGoogle Scholar
  35. [35]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Gunion and Z. Kunszt, Lepton correlations in gauge boson pair production and decay, Phys. Rev. D 33 (1986) 665 [INSPIRE].ADSGoogle Scholar
  38. [38]
    M.J. Duncan, G.L. Kane and W. Repko, WW physics at future colliders, Nucl. Phys. B 272 (1986) 517 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e → W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, U.S.A. (1995), p. 842.Google Scholar
  42. [42]
    B.A. Kniehl, Radiative corrections for H → ZZ in the standard model, Nucl. Phys. B 352 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W , or \( t\bar{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].ADSGoogle Scholar
  44. [44]
    V.D. Barger, K.-m. Cheung, A. Djouadi, B.A. Kniehl and P. Zerwas, Higgs bosons: intermediate mass range at e + e colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Hagiwara, S. Ishihara, J. Kamoshita and B.A. Kniehl, Prospects of measuring general Higgs couplings at e + e linear colliders, Eur. Phys. J. C 14 (2000) 457 [hep-ph/0002043] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [INSPIRE].ADSGoogle Scholar
  47. [47]
    R.M. Godbole, . Miller, D.J. and M. Muhlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    S. Dutta, K. Hagiwara and Y. Matsumoto, Measuring the Higgs-vector boson couplings at linear e + e collider, Phys. Rev. D 78 (2008) 115016 [arXiv:0808.0477] [INSPIRE].ADSGoogle Scholar
  49. [49]
    V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075] [INSPIRE].ADSGoogle Scholar
  50. [50]
    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    I. Low and J. Lykken, Revealing the electroweak properties of a new scalar resonance, JHEP 10 (2010) 053 [arXiv:1005.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSGoogle Scholar
  53. [53]
    H. Muruyama, Notes on phase space, lecture notes, avaiable at
  54. [54]
    R.J. Barlow, Extended maximum likelihood, Nucl. Instrum. Meth. A 297 (1990) 496 [INSPIRE].
  55. [55]
    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  56. [56]
    LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].ADSGoogle Scholar
  57. [57]
    V. Bartsch and G. Quast, Expected signal observability at future experiments, CMS-NOTE-2005-004 (2005).
  58. [58]
    CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    CMS collaboration, G.L. Bayatian et al., CMS physics: technical design report. Volume I: detector performance and software, CMS-TDR-008-1 (2006).
  61. [61]
    S. Catani, D. de Florian and M. Grazzini, Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD, JHEP 01 (2002) 015 [hep-ph/0111164] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    G. Davatz et al., Combining Monte Carlo generators with next-to-next-to-leading order calculations: event reweighting for Higgs boson production at the LHC, JHEP 07 (2006) 037 [hep-ph/0604077] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the H —¿ WW —¿ l nu l nu signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    C. Anastasiou, G. Dissertori, F. Stockli and B.R. Webber, QCD radiation effects on the H → WW → lνlν signal at the LHC, JHEP 03 (2008) 017 [arXiv:0801.2682] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Grazzini, NNLO predictions for the Higgs boson signal in the H → W W → lνlν and H → ZZ → 4 l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    C. Anastasiou, G. Dissertori, M. Grazzini, F. Stockli and B.R. Webber, Perturbative QCD effects and the search for a H → W W → lνlν signal at the Tevatron, JHEP 08 (2009) 099 [arXiv:0905.3529] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    E.L. Berger, Q.-H. Cao, C. Jackson, T. Liu and G. Shaughnessy, Higgs boson search sensitivity in the H → WW dilepton decay mode at \( \sqrt {s} = 7 \) and 10 TeV, Phys. Rev. D 82 (2010) 053003 [arXiv:1003.3875] [INSPIRE].ADSGoogle Scholar
  69. [69]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, arXiv:1107.2117 [INSPIRE].
  71. [71]
    V.D. Barger, J. Lopez and W. Putikka, Next-to-leading logarithm QCD corrections for \( q\bar{q} \to ZZ,{W^{ + }}{W^{ - }},{W^{\pm }}Z \) subprocesses, Int. J. Mod. Phys. A 3 (1988) 2181 [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • James S. Gainer
    • 1
    • 2
  • Kunal Kumar
    • 2
  • Ian Low
    • 1
    • 2
  • Roberto Vega-Morales
    • 2
  1. 1.High Energy Physics Division, Argonne National LaboratoryArgonneUSA
  2. 2.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations