Advertisement

Journal of High Energy Physics

, 2011:17 | Cite as

Splitting strings on integrable backgrounds

  • Benoît Vicedo
Open Access
Article

Abstract

Using integrability we reduce the problem of constructing general classical splitting string solutions on \( \mathbb{R} \) × S 3 to a series of Birkhoff factorization problems. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet σ-model to implicitly construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations with parameters determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL 2(\( \mathbb{C} \)).

Keywords

Integrable Equations in Physics Bosonic Strings Sigma Models AdS-CFT Correspondence 

References

  1. [1]
    N. Beisert et al., Review of AdS/CFT Integrability: An Overview, arXiv:1012.3982 [INSPIRE].
  2. [2]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N =4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited states, Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  4. [4]
    D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: A Proposal, J. Phys. A A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Arutyunov and S. Frolov, String hypothesis for the AdS 5 × S 5 mirror, JHEP 03 (2009) 152 [arXiv:0901.1417] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS 5 × S 5 Mirror Model, JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Okuyama and L.-S. Tseng, Three-point functions in N = 4 SYM theory at one-loop, JHEP 08 (2004) 055 [hep-th/0404190] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    R. Roiban and A. Volovich, Yang-Mills correlation functions from integrable spin chains, JHEP 09 (2004) 032 [hep-th/0407140] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    L.F. Alday, J.R. David, E. Gava and K. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP 09 (2005) 070 [hep-th/0502186] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030 [arXiv:1008.1059] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    R. Roiban and A. Tseytlin, On semiclassical computation of 3-point functions of closed string vertex operators in AdS 5 × S 5, Phys. Rev. D 82 (2010) 106011 [arXiv:1008.4921] [INSPIRE].ADSGoogle Scholar
  14. [14]
    R. Hernandez, Three-point correlation functions from semiclassical circular strings, J. Phys. A A 44 (2011) 085403 [arXiv:1011.0408] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    J. Russo and A. Tseytlin, Large spin expansion of semiclassical 3-point correlators in AdS 5 × S 5 , JHEP 02 (2011) 029 [arXiv:1012.2760] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    L.F. Alday and A.A. Tseytlin, On strong-coupling correlation functions of circular Wilson loops and local operators, J. Phys. A A 44 (2011) 395401 [arXiv:1105.1537] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  17. [17]
    C. Ahn and P. Bozhilov, Three-point Correlation functions of Giant magnons with finite size, Phys. Lett. B 702 (2011) 286 [arXiv:1105.3084] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    T. Deck, Classical string dynamics with nontrivial topology, J. Geom. Phys. 16 (1995) 1 [INSPIRE].
  21. [21]
    H. de Vega, J. Ramirez Mittelbrunn, M. Ramon Medrano and N.G. Sanchez, Classical splitting of fundamental strings, Phys. Rev. D 52 (1995) 4609 [hep-th/9502049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    R. Iengo and J.G. Russo, Semiclassical decay of strings with maximum angular momentum, JHEP 03 (2003) 030 [hep-th/0301109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    R. Iengo and J. Russo, Black hole formation from collisions of cosmic fundamental strings, JHEP 08 (2006) 079 [hep-th/0606110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    K. Peeters, J. Plefka and M. Zamaklar, Splitting spinning strings in AdS/CFT, JHEP 11 (2004) 054 [hep-th/0410275] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    P.-Y. Casteill, R. Janik, A. Jarosz and C. Kristjansen, Quasilocality of joining/splitting strings from coherent states, JHEP 12 (2007) 069 [arXiv:0710.4166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    E. Murchikova, Splitting of folded strings in AdS 3 , Phys. Rev. D 84 (2011) 026002 [arXiv:1104.4804] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Frolov and A.A. Tseytlin, Rotating string solutions: AdS/CFT duality in nonsupersymmetric sectors, Phys. Lett. B 570 (2003) 96 [hep-th/0306143] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  28. [28]
    S.B. Giddings and S.A. Wolpert, A triangulation of moduli space from light cone string theory, Commun. Math. Phys. 109 (1987) 177 [INSPIRE].
  29. [29]
    C.-H. Liu, Lorentz surfaces and Lorentzian CFT - with an appendix on quantization of string phase space, hep-th/9603198 [INSPIRE].
  30. [30]
    M.C. Reed, Singularities in non-linear waves of Klein-Gordon type, Lect. Notes Math. 648 (1978)145.CrossRefGoogle Scholar
  31. [31]
    M.C. Reed, Propagation of singularities for non-linear wave equations in one dimension, Comm. Part. Diff. Eq. 3 (1978) 153.MATHCrossRefGoogle Scholar
  32. [32]
    J. Rauch and M. C. Reed, Propagation of singularities for semilinear hyperbolic equations in one space variable, Ann. Math. 111 (1980) 531.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    J. Rauch and M.C. Reed, Jump discontinuities of semilinear, strictly hyperbolic systems in two variables: creation and propagation, Commun. Math. Phys. 81 (1981) 203.MathSciNetADSMATHCrossRefGoogle Scholar
  34. [34]
    M. Mañas, The principal chiral model as an integrable system, Friedrich Vieweg & Sohn Verlag.Google Scholar
  35. [35]
    A. Pressley and G. Segal, Loop groups, Oxford Math. Monographs, Clarendon Press, Oxford (1986).MATHGoogle Scholar
  36. [36]
    C.-L. Terng and K. Uhlenbeck, Backlund transformations and loop group actions, math/9805074 [INSPIRE].
  37. [37]
    D. Brander, Loop group decompositions in almost split real forms and applications to soliton theory and geometry, Journal of Geometry and Physics 58 (2008) 1792 [arXiv:0805.1979]MathSciNetADSMATHCrossRefGoogle Scholar
  38. [38]
    V. Kazakov, A. Marshakov, J. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    N. Beisert, V. Kazakov, K. Sakai and K. Zarembo, The Algebraic curve of classical superstrings on AdS 5× S 5 , Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  40. [40]
    N. Dorey and B. Vicedo, On the dynamics of finite-gap solutions in classical string theory, JHEP 07 (2006) 014 [hep-th/0601194] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    B. Vicedo, The method of finite-gap integration in classical and semi-classical string theory, J. Phys. A A 44 (2011) 124002 [INSPIRE].
  42. [42]
    A.A. Tseytlin, On semiclassical approximation and spinning string vertex operators in AdS 5× S 5 , Nucl. Phys. B 664 (2003) 247 [hep-th/0304139] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  43. [43]
    E. Buchbinder and A. Tseytlin, On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT, JHEP 08 (2010) 057 [arXiv:1005.4516] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    N. Dorey and B. Vicedo, A Symplectic Structure for String Theory on Integrable Backgrounds, JHEP 03 (2007) 045 [hep-th/0606287] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    K. Zarembo, Strings on Semisymmetric Superspaces, JHEP 05 (2010) 002 [arXiv:1003.0465] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    B. Vicedo, The classical R-matrix of AdS/CFT and its Lie dialgebra structure, Lett. Math. Phys. 95 (2011) 249 [arXiv:1003.1192] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.DESY TheoryHamburgGermany

Personalised recommendations