Advertisement

Journal of High Energy Physics

, 2010:126 | Cite as

Particle dynamics near extreme Kerr throat and supersymmetry

  • Anton Galajinsky
Article

Abstract

The extreme Kerr throat solution is believed to be non-supersymmetric. However, its isometry group SO(2, 1) × U(1) matches precisely the bosonic subgroup of \( \mathcal{N} = 2 \) superconformal group in one dimension. In this paper we construct \( \mathcal{N} = 2 \) supersymmetric extension of a massive particle moving near the horizon of the extreme Kerr black hole. Bosonic conserved charges are related to Killing vectors in a conventional way. Geometric interpretation of supersymmetry charges remains a challenge.

Keywords

Extended Supersymmetry Black Holes 

References

  1. [1]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [SPIRES].ADSGoogle Scholar
  3. [3]
    A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [SPIRES].ADSGoogle Scholar
  4. [4]
    R.P. Geroch, Local characterization of singularities in general relativity, J. Math. Phys. 9 (1968) 450 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    B. Carter, Global structure of the Kerr family of gravitational fields, Phys. Rev. 174 (1968) 1559 [SPIRES].MATHCrossRefADSGoogle Scholar
  6. [6]
    M. Walker and R. Penrose, On quadratic first integrals of the geodesic equations for type [22] spacetimes, Commun. Math. Phys. 18 (1970) 265 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  7. [7]
    T. Mohaupt, Black holes in supergravity and string theory, Class. Quant. Grav. 17 (2000) 3429 [hep-th/0004098] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  8. [8]
    J.-G. Zhou, Super 0-brane and GS superstring actions on AdS 2 × S 2, Nucl. Phys. B 559 (1999) 92 [hep-th/9906013] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    S. Bellucci, A. Galajinsky, E. Ivanov and S. Krivonos, AdS 2 /CFT 1 , canonical transformations and superconformal mechanics, Phys. Lett. B 555 (2003) 99 [hep-th/0212204] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Galajinsky, Particle dynamics on AdS 2 × S 2 background with two-form flux, Phys. Rev. D 78 (2008) 044014 [arXiv:0806.1629] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, Uniqueness of extremal Kerr and Kerr-Newman black holes, Phys. Rev. D 81 (2010) 024033 [arXiv:0906.2367] [SPIRES].ADSGoogle Scholar
  12. [12]
    G.W. Gibbons, R.H. Rietdijk and J.W. van Holten, SUSY in the sky, Nucl. Phys. B 404 (1993) 42 [hep-th/9303112] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    J.P. Ngome, P.A. Horvathy and J.W. van Holten, Dynamical supersymmetry of spin particle-magnetic field interaction, J. Phys. A 43 (2010) 285401 [arXiv:1003.0137] [SPIRES].Google Scholar
  14. [14]
    P. Claus et al., Black holes and superconformal mechanics, Phys. Rev. Lett. 81 (1998) 4553 [hep-th/9804177] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Nersessian, On the geometry of relativistic anyon, Mod. Phys. Lett. A 12 (1997) 1783 [hep-th/9704182] [SPIRES].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Laboratory of Mathematical PhysicsTomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations