Journal of High Energy Physics

, 2010:102 | Cite as

The quark and gluon form factors to three loops in QCD through to \( \mathcal{O}\left( {{\epsilon^2}} \right) \)

  • T. Gehrmann
  • E. W. N. Glover
  • T. Huber
  • N. Ikizlerli
  • C. Studerus


We give explicit formulae for the \( \mathcal{O}(\epsilon) \) and \( \mathcal{O}\left( {{\epsilon^2}} \right) \) contributions to the unrenormalised three loop QCD corrections to quark and gluon form factors. These contributions have at most transcendentality weight eight. The \( \mathcal{O}(\epsilon) \) terms of the three-loop form factors are required for the extraction of the four-loop quark and gluon collinear anomalous dimensions. The \( \mathcal{O}\left( {{\epsilon^2}} \right) \) terms represent an irreducible contribution to the finite part of the form factors at four-loops. For the sake of completeness, we also give the contributions to the one and two loop form factors to the same transcendentality weight eight.


NLO Computations QCD 


  1. [1]
    G. Altarelli, R.K. Ellis and G. Martinelli, Large perturbative corrections to the Drell-Yan process in QCD, Nucl. Phys. B 157 (1979) 461 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α s 2 correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett. 70 (1993) 1372 [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    A. Djouadi, M. Spira and P.M. Zerwas, QCD corrections to hadronic Higgs decays, Z. Phys. C 70 (1996) 427 [hep-ph/9511344] [SPIRES].Google Scholar
  8. [8]
    M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [SPIRES].CrossRefADSMATHGoogle Scholar
  9. [9]
    R. Harlander and P. Kant, Higgs production and decay: analytic results at next-to-leading order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    V. Ravindran, J. Smith and W.L. van Neerven, Two-loop corrections to Higgs boson production, Nucl. Phys. B 704 (2005) 332 [hep-ph/0408315] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The three-loop splitting functions in QCD: the non-singlet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Vogt, S. Moch and J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [SPIRES].ADSGoogle Scholar
  18. [18]
    G. Kramer and B. Lampe, Two jet cross-section in e + e annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [SPIRES].ADSGoogle Scholar
  19. [19]
    T. Matsuura and W.L. van Neerven, Second order logarithmic corrections to the Drell-Yan cross-section, Z. Phys. C 38 (1988) 623 [SPIRES].ADSGoogle Scholar
  20. [20]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    R.V. Harlander, Virtual corrections to gg → H to two loops in the heavy top limit, Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [SPIRES].ADSGoogle Scholar
  22. [22]
    T. Gehrmann, T. Huber and D. Maître, Two-loop quark and gluon form factors in dimensional regularisation, Phys. Lett. B 622 (2005) 295 [hep-ph/0507061] [SPIRES].ADSGoogle Scholar
  23. [23]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [SPIRES].
  27. [27]
    S.G. Gorishnii, S.A. Larin, L.R. Surguladze and F.V. Tkachov, Mincer: program for multiloop calculations in quantum field theory for the SCHOONSCHIP system, Comput. Phys. Commun. 55 (1989) 381 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    S.A. Larin, F.V. Tkachov and J.A.M. Vermaseren, The form version of Mincer, NIKHEF-H-91-18, NIKHEF, Amsterdam The Netherlands (1991) [SPIRES].Google Scholar
  29. [29]
    S. Bekavac, Calculation of massless Feynman integrals using harmonic sums, Comput. Phys. Commun. 175 (2006) 180 [hep-ph/0505174] [SPIRES].CrossRefADSMATHGoogle Scholar
  30. [30]
    T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless three-loop form factors: one-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252 [hep-ph/0607185] [SPIRES].ADSGoogle Scholar
  31. [31]
    G. Heinrich, T. Huber and D. Maître, Master integrals for fermionic contributions to massless three-loop form factors, Phys. Lett. B 662 (2008) 344 [arXiv:0711.3590] [SPIRES].ADSGoogle Scholar
  32. [32]
    G. Heinrich, T. Huber, D.A. Kosower and V.A. Smirnov, Nine-propagator master integrals for massless three-loop form factors, Phys. Lett. B 678 (2009) 359 [arXiv:0902.3512] [SPIRES].ADSGoogle Scholar
  33. [33]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    R.N. Lee and V.A. Smirnov, Analytic ϵ-expansions of master integrals corresponding to massless three-loop form factors and three-loop g-2 up to four-loop transcendentality weight, arXiv:1010.1334 [SPIRES].
  36. [36]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Dimensional recurrence relations: an easy way to evaluate higher orders of expansion in ϵ, arXiv:1005.0362 [SPIRES].
  39. [39]
    T. Huber and D. Maître, HypExp 2, expanding hypergeometric functions about half-integer parameters, Comput. Phys. Commun. 178 (2008) 755 [arXiv:0708.2443] [SPIRES].CrossRefADSMATHGoogle Scholar
  40. [40]
    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [SPIRES].CrossRefADSMATHGoogle Scholar
  41. [41]
    A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [SPIRES].CrossRefADSMATHGoogle Scholar
  42. [42]
    A.V. Smirnov, V.A. Smirnov and M. Tentyukov, FIESTA 2: parallelizeable multiloop numerical calculations, arXiv:0912.0158 [SPIRES].
  43. [43]
    T. Huber and D. Maître, HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122 [hep-ph/0507094] [SPIRES].CrossRefADSMATHGoogle Scholar
  44. [44]
    J. Blumlein, D.J. Broadhurst and J.A.M. Vermaseren, The multiple zeta value data mine, Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    D. Maître, HPL, a Mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    F. Wilczek, Decays of heavy vector mesons into Higgs particles, Phys. Rev. Lett. 39 (1977) 1304 [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs boson interactions with nucleons, Phys. Lett. B 78 (1978) 443 [SPIRES].ADSGoogle Scholar
  48. [48]
    J.R. Ellis, M.K. Gaillard, D.V. Nanopoulos and C.T. Sachrajda, Is the mass of the Higgs boson about 10 GeV ?, Phys. Lett. B 83 (1979) 339 [SPIRES].ADSGoogle Scholar
  49. [49]
    T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C 18 (1983) 69 [SPIRES].ADSGoogle Scholar
  50. [50]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order α s 4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77 [hep-ph/9505225] [SPIRES].Google Scholar
  52. [52]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α s 3 ) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    J.A.M. Vermaseren, A. Vogt and S. Moch, The third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • T. Gehrmann
    • 1
  • E. W. N. Glover
    • 2
  • T. Huber
    • 3
  • N. Ikizlerli
    • 2
  • C. Studerus
    • 1
    • 4
  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.Institute for Particle Physics PhenomenologyUniversity of DurhamDurhamU.K.
  3. 3.Fachbereich 7, Universität SiegenSiegenGermany
  4. 4.Faculty of PhysicsUniversity of BielefeldBielefeldGermany

Personalised recommendations