Journal of High Energy Physics

, 2010:29 | Cite as

SLIM at LHC: LHC search power for a model linking dark matter and neutrino mass



Recently a model has been proposed that links dark matter and neutrino masses. The dark matter candidate which is dubbed as SLIM has a mass of MeV scale and can show up at low energy experiments. The model also has a high energy sector which consists of a scalar doublet, (ϕ , ϕ 0). We discuss the potential of the LHC for discovering the new scalars. We focus on the ϕ + ϕ and ϕ ± ϕ 0 production and the subsequent decay of the charged scalar to a charged lepton and the SLIM which appears as missing energy. Identifying the background, we estimate the signal significance and find that it can exceed 5σ at 30 fb−1 for the 14 TeV run at the LHC. We comment on the possibility of extracting the flavor structure of the Yukawa couplings which also determine the neutrino mass matrix. Finally, we discuss the prospects of this search at the current 7 TeV run of the LHC.


Neutrino Physics Beyond Standard Model Hadronic Colliders 


  1. [1]
    C. Boehm, Y. Farzan, T. Hambye, S. Palomares-Ruiz and S. Pascoli, Are small neutrino masses unveiling the missing mass problem of the universe?, Phys. Rev. D 77 (2008) 043516 [hep-ph/0612228] [SPIRES].ADSGoogle Scholar
  2. [2]
    Y. Farzan, A Framework to Simultaneously Explain Tiny Neutrino Mass and Huge Missing Mass Problem of the Universe, Mod. Phys. Lett. A 25 (2010) 2111 [arXiv:1009.1234] [SPIRES]. ADSGoogle Scholar
  3. [3]
    Y. Farzan, A minimal model linking two great mysteries: neutrino mass and dark matter, Phys. Rev. D 80 (2009) 073009 [arXiv:0908.3729] [SPIRES].ADSGoogle Scholar
  4. [4]
    LEP Higgs Working Group for Higgs boson searches collaboration and ALEPH collaboration, Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209 GeV, hep-ex/0107031 [SPIRES].
  5. [5]
    OPAL collaboration, G. Abbiendi et al., Search for anomalous production of di-lepton events with missing transverse momentum in e + e collisions at \( \sqrt {s} = 183\;GeV - 209\;GeV \) , Eur. Phys. J. C 32 (2004) 453 [hep-ex/0309014] [SPIRES].ADSGoogle Scholar
  6. [6]
    OPAL collaboration, G. Abbiendi et al., Search for Charged Higgs Bosons in e + e Collisions at \( \sqrt {s} = \textit{183 - 209}\;GeV \) , arXiv:0812.0267 [SPIRES].
  7. [7]
  8. [8]
    V.I. Kuvshinov, V.I. Kashkan and R.G. Shulyakovsky, New theoretical and experimental correlation aspects of QCD-instantons in high energy collisions, hep-ph/0107031 [SPIRES].
  9. [9]
    CMS Collaboration, CMS Physics Technical Design Report. Volume I: Detector Performance and Software, CERN/LHCC 2006-001, section 12.1.2.
  10. [10]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].CrossRefADSMATHGoogle Scholar
  11. [11]
    S. Jadach, Z. Was, R. Decker and J.H. Kühn, The τ decay library TAUOLA: Version 2.4, Comput. Phys. Commun. 76 (1993) 361 [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    M. Jezabek, Z. Was, S. Jadach and J.H. Kuhn, The τ decay library TAUOLA, update with exact O(α) QED corrections in tau → μ(e) neutrino anti-neutrino decay modes, Comput. Phys. Commun. 70 (1992) 69 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S. Jadach, J.H. Kuhn and Z. Was, TAUOLA: A Library of Monte Carlo programs to simulate decays of polarized τ leptons, Comput. Phys. Commun. 64 (1990) 275 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    N. Davidson, G. Nanava, T. Przedzinski, E. Richter-Was and Z. Was, Universal Interface of TAUOLA Technical and Physics Documentation, arXiv:1002.0543 [SPIRES].
  15. [15]
    HepMC, a C++ Event Record for Monte Carlo Generators,
  16. [16]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  17. [17]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    J. Campbell and K. Ellis, MCFM – Monte Carlo for FeMtobarn processes,
  19. [19]
    LHAPDF, the Les Houches Accord PDF Interface,
  20. [20]
  21. [21]
    CMS Collaboration, CMS Physics Technical Design Report. Volume I: Detector Performance and Software, CERN/LHCC 2006-001, section 11.6.5.
  22. [22]
    M. Beneke et al., Top quark physics, hep-ph/0003033 [SPIRES].
  23. [23]
  24. [24]
    M. Ubiali et al., Combined PDF and strong coupling uncertainties at the LHC with NNPDF2.0, arXiv:1005.0397 [SPIRES].
  25. [25]
    CMS Collaboration, CMS Physics Technical Design Report. Volume I: Detector Performance and Software, CERN/LHCC 2006-001, section 8.1.2.
  26. [26]
    CMS collaboration, CMS physics Technical Design Report. Volume II: Physics Performance, CERN/LHCC 2006-021, section B.2.1.
  27. [27]
    Q.-H. Cao, S. Kanemura and C.P. Yuan, Associated production of CP-odd and charged Higgs bosons at hadron colliders, Phys. Rev. D 69 (2004) 075008 [hep-ph/0311083] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.School of physicsInstitute for Research in Fundamental Sciences (IPM)TehranIRAN
  2. 2.School of particles and acceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIRAN

Personalised recommendations