Journal of High Energy Physics

, 2010:24 | Cite as

Dynamical supersymmetry breaking in intersecting brane models

  • F. Fucito
  • A. Lionetto
  • J. F. Morales
  • R. Richter


In this paper we study dynamical supersymmetry breaking in absence of gravity with the matter content of the minimal supersymmetric standard model. The hidden sector of the theory is a strongly coupled gauge theory, realized in terms of microscopic variables which condensate to form mesons. The supersymmetry breaking scalar potential combines F, D terms with instanton generated interactions in the Higgs-mesons sector. We show that for a large region in parameter space the vacuum breaks in addition to supersymmetry also electroweak gauge symmetry. We furthermore present local D-brane configurations that realize these supersymmetry breaking patterns.


Supersymmetry Breaking Intersecting branes models Gauge Symmetry 


  1. [1]
    R.N. Mohapatra, Unification and supersymmetry, Springer, Berlin Germany (2002), pag. 448.Google Scholar
  2. [2]
    M. Drees, Theory and phenomenology of sparticles, World Scientific, Singapore (2005), pag. 584.Google Scholar
  3. [3]
    J. Terning, Modern supersymmetry: dynamics and duality, Clerndon Press, Oxford U.K. (2006), pag. 324.Google Scholar
  4. [4]
    H. Baer and X. Tata, Weak scale supersymmetry, Cambridge University Press, Cambridge U.K. (2006), pag. 556.Google Scholar
  5. [5]
    P.M.R. Binetruy, Supersymmetry, Oxford University Press, Oxford U.K. (2007), pag. 536.Google Scholar
  6. [6]
    M. Dine, Supersymmetry and string theory: beyond the standard model, Cambridge University Press, Cambridge U.K. (2007), pag. 515.MATHGoogle Scholar
  7. [7]
    I. Affleck, M. Dine and N. Seiberg, Exponential hierarchy from dynamical supersymmetry breaking, Phys. Lett. B 140 (1984) 59 [SPIRES].ADSGoogle Scholar
  8. [8]
    I. Affleck, M. Dine and N. Seiberg, Dynamical supersymmetry breaking in four-dimensions and its phenomenological implications, Nucl. Phys. B 256 (1985) 557 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Nonperturbative aspects in supersymmetric gauge theories, Phys. Rept. 162 (1988) 169 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    M.A. Shifman and A.I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, hep-th/9902018 [SPIRES].
  11. [11]
    M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [SPIRES].ADSGoogle Scholar
  12. [12]
    M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [SPIRES].ADSGoogle Scholar
  14. [14]
    M. Bianchi, F. Fucito and J.F. Morales, Dynamical supersymmetry breaking from unoriented D-brane instantons, JHEP 08 (2009) 040 [arXiv:0904.2156] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    D. Lüst, Intersecting brane worlds: a path to the standard model?, Class. Quant. Grav. 21 (2004) S1399 [hep-th/0401156] [SPIRES].CrossRefGoogle Scholar
  16. [16]
    A.M. Uranga, Intersecting brane worlds, Class. Quant. Grav. 22 (2005) S41 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  17. [17]
    R. Blumenhagen, M. Cvetič, P. Langacker and G. Shiu, Toward realistic intersecting D-brane models, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71 [hep-th/0502005] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491 [hep-th/0702094] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    E. Dudas and S.K. Vempati, Large D-terms, hierarchical soft spectra and moduli stabilisation, Nucl. Phys. B 727 (2005) 139 [hep-th/0506172] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    E. Dudas, C. Papineau and S. Pokorski, Moduli stabilization and uplifting with dynamically generated F-terms, JHEP 02 (2007) 028 [hep-th/0610297] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, Moduli stabilization with Fayet-Iliopoulos uplift, JHEP 04 (2008) 015 [arXiv:0711.4934] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    K.A. Intriligator and N. Seiberg, Lectures on supersymmetry breaking, Class. Quant. Grav. 24 (2007) S741 [hep-ph/0702069] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    M. Cvetič, J. Halverson and R. Richter, 2, Realistic Yukawa structures from orientifold compactifications, JHEP 12 (2009) 063 [arXiv:0905.3379] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    M. Bianchi and J.F. Morales, Anomalies and tadpoles, JHEP 03 (2000) 030 [hep-th/0002149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model spectra from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    L.E. Ibáñez and R. Richter, 2, Stringy instantons and Yukawa couplings in MSSM-like orientifold models, JHEP 03 (2009) 090 [arXiv:0811.1583] [SPIRES].ADSGoogle Scholar
  30. [30]
    G.K. Leontaris, Instanton induced charged fermion and neutrino masses in a minimal standard model scenario from intersecting D-branes, Int. J. Mod. Phys. A 24 (2009) 6035 [arXiv:0903.3691] [SPIRES].ADSGoogle Scholar
  31. [31]
    P. Anastasopoulos, E. Kiritsis and A. Lionetto, On mass hierarchies in orientifold vacua, JHEP 08 (2009) 026 [arXiv:0905.3044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    E. Kiritsis, M. Lennek and B. Schellekens, SU(5) orientifolds, Yukawa couplings, stringy instantons and proton decay, Nucl. Phys. B 829 (2010) 298 [arXiv:0909.0271] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    M. Cvetič, J. Halverson and R. Richter, Mass hierarchies from MSSM orientifold compactifications, JHEP 07 (2010) 005 [arXiv:0909.4292] [SPIRES].ADSGoogle Scholar
  34. [34]
    M. Cvetič, J. Halverson, P. Langacker and R. Richter, The Weinberg operator and a lower string scale in orientifold compactifications, JHEP 10 (2010) 094 [arXiv:1001.3148] [SPIRES]. CrossRefGoogle Scholar
  35. [35]
    P. Anastasopoulos, G.K. Leontaris and N.D. Vlachos, Phenomenological analysis of D-brane Pati-Salam vacua, JHEP 05 (2010) 011 [arXiv:1002.2937] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    M. Cvetič, J. Halverson and P. Langacker, Singlet extensions of the MSSM in the quiver landscape, JHEP 09 (2010) 076 [arXiv:1006.3341] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    R. Blumenhagen, A. Deser and D. Lüst, FCNC processes from D-brane instantons, arXiv:1007.4770 [SPIRES].
  38. [38]
    I. Antoniadis, E. Kiritsis and T.N. Tomaras, A D-brane alternative to unification, Phys. Lett. B 486 (2000) 186 [hep-ph/0004214] [SPIRES].MathSciNetADSGoogle Scholar
  39. [39]
    G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: a bottom-up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    I. Antoniadis, E. Kiritsis and T. Tomaras, D-brane standard model, Fortsch. Phys. 49 (2001) 573 [hep-th/0111269] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  41. [41]
    G. Aldazabal, S. Franco, L.E. Ibáñez, R. Rabadán and A.M. Uranga, D =4 chiral string compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103 [hep-th/0011073] [SPIRES]. MATHCrossRefMathSciNetADSGoogle Scholar
  42. [42]
    L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [SPIRES].Google Scholar
  43. [43]
    N. Akerblom, R. Blumenhagen, D. Lüst, E. Plauschinn and M. Schmidt-Sommerfeld, Non-perturbative SQCD superpotentials from string instantons, JHEP 04 (2007) 076 [hep-th/0612132] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    L.E. Ibáñez and A.M. Uranga, Neutrino Majorana masses from string theory instanton effects, JHEP 03 (2007) 052 [hep-th/0609213] [SPIRES].ADSGoogle Scholar
  45. [45]
    R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string vacua — The seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113 [hep-th/0609191] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at orbifold singularities, JHEP 06 (2007) 067 [arXiv:0704.0262] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    M. Bianchi, F. Fucito and J.F. Morales, D-brane instantons on the T 6 /Z 3 orientifold, JHEP 07 (2007) 038 [arXiv: 0704.0784] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    L.E. Ibáñez and A.M. Uranga, Instanton induced open string superpotentials and branes at singularities, JHEP 02 (2008) 103 [arXiv:0711.1316] [SPIRES].ADSGoogle Scholar
  49. [49]
    L.E. Ibáñez, A.N. Schellekens and A.M. Uranga, Instanton induced neutrino Majorana masses in CFT orientifolds with MSSM-like spectra, JHEP 06 (2007) 011 [arXiv:0704.1079] [SPIRES].ADSGoogle Scholar
  50. [50]
    M. Cvetič, R. Richter, 2 and T. Weigand, Computation of D-brane instanton induced superpotential couplings — Majorana masses from string theory, Phys. Rev. D 76 (2007) 086002 [hep-th/0703028] [SPIRES].ADSGoogle Scholar
  51. [51]
    M. Cvetič and T. Weigand, Hierarchies from D-brane instantons in globally defined Calabi-Yau Orientifolds, Phys. Rev. Lett. 100 (2008) 251601 [arXiv:0711.0209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  52. [52]
    I. Antoniadis, E. Kiritsis and J. Rizos, Anomalous U(1)s in type-I superstring vacua, Nucl. Phys. B 637 (2002) 92 [hep-th/0204153] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    P. Anastasopoulos, Anomalous U(1)s masses in non-supersymmetric open string vacua, Phys. Lett. B 588 (2004) 119 [hep-th/0402105] [SPIRES].MathSciNetADSGoogle Scholar
  54. [54]
    P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    P. Anastasopoulos et al., Minimal anomalous U(1)-prime extension of the MSSM, Phys. Rev. D 78 (2008) 085014 [arXiv:0804.1156] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • F. Fucito
    • 1
    • 2
  • A. Lionetto
    • 1
    • 2
  • J. F. Morales
    • 1
    • 2
  • R. Richter
    • 1
    • 2
  1. 1.I.N.F.N. Sezione di Roma Tor VergataVia della Ricerca ScientificaRomaItaly
  2. 2.Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomaItaly

Personalised recommendations