Journal of High Energy Physics

, 2010:21 | Cite as

From world-sheet supersymmetry to super target spaces

  • Thomas Creutzig
  • Peter B. Rønne
Open Access


We investigate the relation between \( \mathcal{N} = \left( {2,2} \right) \) super conformal Lie group WZNW models and Lie super group WZNW models. The B-twist of an exactly marginal perturbation of the world-sheet superconformal sigma model is the supergroup model. Moreover, the superconformal currents are expressed in terms of Lie superalgebra currents in the twisted theory. As applications, we find protected sectors and boundary actions in the supergroup sigma model. A special example is the relation between string theory on AdS3×S3×T4 in the RNS formalism and the U(1, 1|2)×U(1|1)×U(1|1) supergroup WZNW model.


AdS-CFT Correspondence Boundary Quantum Field Theory Conformal Field Models in String Theory Sigma Models 


  1. [1]
    V. Schomerus and H. Saleur, The GL(1|1) WZW model: From supergeometry to logarithmic CFT, Nucl. Phys. B 734 (2006) 221 [hep-th/0510032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    H. Saleur and V. Schomerus, On the SU(2|1) WZNW model and its statistical mechanics applications, Nucl. Phys. B 775 (2007) 312 [hep-th/0611147] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G. Götz, T. Quella and V. Schomerus, The WZNW model on PSU(1, 1|2), JHEP 03 (2007) 003 [hep-th/0610070] [SPIRES].CrossRefGoogle Scholar
  4. [4]
    T. Quella and V. Schomerus, Free fermion resolution of supergroup WZNW models, JHEP 09 (2007) 085 [arXiv:0706.0744] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    T. Creutzig and V. Schomerus, Boundary Correlators in Supergroup WZNW Models, Nucl. Phys. B 807 (2009) 471 [arXiv:0804.3469] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    T. Creutzig and Y. Hikida, Branes in the OSP(1|2) WZNW model, Nucl. Phys. B 842 (2011) 172 [arXiv:1004.1977] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    N.P. Warner, Supersymmetry in boundary integrable models, Nucl. Phys. B 450 (1995) 663 [hep-th/9506064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    M.R. Gaberdiel and I. Kirsch, Worldsheet correlators in AdS 3 /CFT 2, JHEP 04 (2007) 050 [hep-th/0703001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A. Dabholkar and A. Pakman, Exact chiral ring of AdS 3 /CFT 2, Adv. Theor. Math. Phys. 13 (2009) 409 [hep-th/0703022] [SPIRES].MATHMathSciNetGoogle Scholar
  10. [10]
    J. de Boer, J. Manschot, K. Papadodimas and E. Verlinde, T he chiral ring of AdS 3 /CFT 2 and the attractor mechanism, JHEP 03 (2009) 030 [arXiv:0809.0507] [SPIRES].CrossRefGoogle Scholar
  11. [11]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    C. Candu, T. Creutzig, V. Mitev and V. Schomerus, Cohomological Reduction of σ-models, JHEP 05 (2010) 047 [arXiv:1001.1344] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S. Guruswamy, A. LeClair and A.W.W. Ludwig, gl(N|N) super-current algebras for disordered Dirac fermions in two dimensions, Nucl. Phys. B 583 (2000) 475 [cond-mat/9909143] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    M.R. Zirnbauer, Conformal field theory of the integer quantum Hall plateau transition, hep-th/9905054 [SPIRES].
  15. [15]
    H. Saleur, Polymers and percolation in two-dimensions and twisted N =2 supersymmetry, Nucl. Phys. B 382 (1992) 486 [hep-th/9111007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    E. Getzler, Manin triples and N =2 superconformal field theory, hep-th/9307041 [SPIRES].
  17. [17]
    P. Di Vecchia, V.G. Knizhnik, J.L. Petersen and P. Rossi, A Supersymmetric Wess-Zumino Lagrangian in Two-Dimensions, Nucl. Phys. B 253 (1985) 701 [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    T. Creutzig, Branes in supergroups, arXiv:0908.1816 [SPIRES].
  19. [19]
    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, Notes on topological string theory and 2-D quantum gravity, Based on lectures given at Spring School on Strings and Quantum Gravity, Trieste, Italy, Apr 24–May 2 (1990) and at Cargese Workshop on Random Surfaces, Quantum Gravity and Strings, Cargese, France, May 28–Jun 1 (1990).Google Scholar
  20. [20]
    M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  21. [21]
    K. Hori et al., Mirror symmetry, American Mathematical Society, Providence U.S.A. (2003).Google Scholar
  22. [22]
    M. Bershadsky, S. Zhukov and A. Vaintrob, PSL(n|n) σ-model as a conformal field theory, Nucl. Phys. B 559 (1999) 205 [hep-th/9902180] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    T. Quella, V. Schomerus and T. Creutzig, Boundary Spectra in Superspace σ-models, JHEP 10 (2008) 024 [arXiv:0712.3549] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [SPIRES].MATHMathSciNetGoogle Scholar
  25. [25]
    J .M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2,R) WZW model. I, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  27. [27]
    I. Brunner, M. Herbst, W. Lerche and B. Scheuner, Landau-Ginzburg realization of open string TFT, JHEP 11 (2006) 043 [hep-th/0305133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    K. Hori and J. Walcher, D-branes from matrix factorizations, Comptes Rendus Physique 5 (2004) 1061 [hep-th/0409204] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    T. Creutzig, T. Quella and V. Schomerus, Branes in the GL(1|1) WZNW-Model, Nucl. Phys. B 792 (2008) 257 [arXiv:0708.0583] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    T. Creutzig, Geometry of branes on supergroups, Nucl. Phys. B 812 (2009) 301 [arXiv:0809.0468] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    T. Creutzig, T. Quella and V. Schomerus, New boundary conditions for the c = −2 ghost system, Phys. Rev. D 77 (2008) 026003 [hep-th/0612040] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    T. Creutzig and P.B. Ronne, The GL(1|1)-symplectic fermion correspondence, Nucl. Phys. B 815 (2009) 95 [arXiv:0812.2835] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    I.T. Ivanov, B.-b. Kim and M. Roček, Complex structures, duality and WZW models in extended superspace, Phys. Lett. B 343 (1995) 133 [hep-th/9406063] [SPIRES].ADSGoogle Scholar
  34. [34]
    T. Creutzig, P.B. Ronne and V. Schomerus, N =2 Superconformal Symmetry in Super Coset Models, Phys. Rev. D 80 (2009) 066010 [arXiv:0907.3902] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of North CarolinaChapel HillU.S.A.
  2. 2.DESY Theory GroupDESY HamburgHamburgGermany
  3. 3.National Institute for Theoretical Physics and Centre for Theoretical PhysicsUniversity of the WitwatersrandWitsSouth Africa

Personalised recommendations