Skip to main content
Log in

A fat Higgs with a magnetic personality

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We introduce a novel composite Higgs theory based on confining supersymmetric QCD. Supersymmetric duality plays a key role in this construction, with a “fat” Higgs boson emerging as a dual magnetic degree of freedom charged under the dual magnetic gauge group. Due to spontaneous color-flavor locking in the infrared, the electroweak gauge symmetry is aligned with the dual magnetic gauge group, allowing large Yukawa couplings between elementary matter fields and the composite Higgs. At the same time, this theory exhibits metastable supersymmetry breaking, leading to low-scale gauge mediation via composite messengers. The Higgs boson is heavier than in minimal supersymmetric theories, due to a large F -term quartic coupling as well as small non-decoupling D-terms. This theory predicts quasi-stable TeV-scale pseudo-modulini, some of which are charged under standard model color, possibly giving rise to long-lived R-hadrons at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].

    ADS  Google Scholar 

  2. S. Chang, C. Kilic and R. Mahbubani, The new fat Higgs: slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [INSPIRE].

    ADS  Google Scholar 

  3. A. Delgado and T.M. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Berkooz, P.L. Cho, P. Kraus and M.J. Strassler, Dual descriptions of SO(10) SUSY gauge theories with arbitrary numbers of spinors and vectors, Phys. Rev. D 56 (1997) 7166 [hep-th/9705003] [INSPIRE].

    ADS  Google Scholar 

  5. S. Samuel, Bosonic technicolor, Nucl. Phys. B 347 (1990) 625 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].

    ADS  Google Scholar 

  7. M.A. Luty, J. Terning and A.K. Grant, Electroweak symmetry breaking by strong supersymmetric dynamics at the TeV scale, Phys. Rev. D 63 (2001) 075001 [hep-ph/0006224] [INSPIRE].

    ADS  Google Scholar 

  8. H. Murayama, Technicolorful supersymmetry, hep-ph/0307293 [INSPIRE].

  9. S. Schäfer-Nameki, C. Tamarit and G. Torroba, A hybrid Higgs, JHEP 03 (2011) 113 [arXiv:1005.0841] [INSPIRE].

    Article  ADS  Google Scholar 

  10. S. Schäfer-Nameki, C. Tamarit and G. Torroba, Naturalness from runaways in direct mediation, Phys. Rev. D 83 (2011) 035016 [arXiv:1011.0001] [INSPIRE].

    ADS  Google Scholar 

  11. H. Fukushima, R. Kitano and M. Yamaguchi, SuperTopcolor, JHEP 01 (2011) 111 [arXiv:1012.5394] [INSPIRE].

    Article  ADS  Google Scholar 

  12. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. C.F. Kolda and J. March-Russell, Low-energy signatures of semiperturbative unification, Phys. Rev. D 55 (1997) 4252 [hep-ph/9609480] [INSPIRE].

    ADS  Google Scholar 

  14. S.R. Behbahani, N. Craig and G. Torroba, Single-sector supersymmetry breaking, chirality and unification, Phys. Rev. D 83 (2011) 015004 [arXiv:1009.2088] [INSPIRE].

    ADS  Google Scholar 

  15. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Green, A. Katz and Z. Komargodski, Direct gaugino mediation, Phys. Rev. Lett. 106 (2011) 061801 [arXiv:1008.2215] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Essig, J.-F. Fortin, K. Sinha, G. Torroba and M.J. Strassler, Metastable supersymmetry breaking and multitrace deformations of SQCD, JHEP 03 (2009) 043 [arXiv:0812.3213] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  19. C. Tamarit, Decays of metastable vacua in SQCD, JHEP 06 (2011) 126 [arXiv:1105.3222] [INSPIRE].

    Article  ADS  Google Scholar 

  20. E. Gorbatov and M. Sudano, Sparticle masses in Higgsed gauge mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  21. A. Giveon, A. Katz and Z. Komargodski, On SQCD with massive and massless flavors, JHEP 06 (2008) 003 [arXiv:0804.1805] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Giveon, A. Katz, Z. Komargodski and D. Shih, Dynamical SUSY and R-symmetry breaking in SQCD with massive and massless flavors, JHEP 10 (2008) 092 [arXiv:0808.2901] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric standard model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].

    ADS  Google Scholar 

  27. H. Pagels and J.R. Primack, Supersymmetry, cosmology and new TeV physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-α forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].

    ADS  Google Scholar 

  29. S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Supersymmetric analysis and predictions based on the CDF eeγγ + missing E T event, Phys. Rev. Lett. 76 (1996) 3498 [hep-ph/9602239] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Dimopoulos, S.D. Thomas and J.D. Wells, Implications of low-energy supersymmetry breaking at the Tevatron, Phys. Rev. D 54 (1996) 3283 [hep-ph/9604452] [INSPIRE].

    ADS  Google Scholar 

  32. S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders, Phys. Rev. D 54 (1996) 5395 [hep-ph/9605398] [INSPIRE].

    ADS  Google Scholar 

  33. P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  34. M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = {7}\;TeV \) in events with two photons and missing transverse energy, Phys. Rev. Lett. 106 (2011) 211802 [arXiv:1103.0953] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Fairbairn et al., Stable massive particles at colliders, Phys. Rept. 438 (2007) 1 [hep-ph/0611040] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Jedamzik, Did something decay, evaporate, or annihilate during big bang nucleosynthesis?, Phys. Rev. D 70 (2004) 063524 [astro-ph/0402344] [INSPIRE].

    ADS  Google Scholar 

  38. S. Bailly, K. Jedamzik and G. Moultaka, Gravitino dark matter and the cosmic lithium abundances, Phys. Rev. D 80 (2009) 063509 [arXiv:0812.0788] [INSPIRE].

    ADS  Google Scholar 

  39. CMS collaboration, V. Khachatryan et al., Search for heavy stable charged particles in pp collisions at \( \sqrt {s} = {7}\;TeV \), JHEP 03 (2011) 024 [arXiv:1101.1645] [INSPIRE].

    Article  ADS  Google Scholar 

  40. ATLAS collaboration, G. Aad et al., Search for stable hadronising squarks and gluinos with the ATLAS experiment at the LHC, Phys. Lett. B 701 (2011) 1 [arXiv:1103.1984] [INSPIRE].

    ADS  Google Scholar 

  41. A. Arvanitaki, S. Dimopoulos, A. Pierce, S. Rajendran and J.G. Wacker, Stopping gluinos, Phys. Rev. D 76 (2007) 055007 [hep-ph/0506242] [INSPIRE].

    ADS  Google Scholar 

  42. CMS collaboration, V. Khachatryan et al., Search for stopped gluinos in pp collisions at \( \sqrt {s} = {7}\;TeV \), Phys. Rev. Lett. 106 (2011) 011801 [arXiv:1011.5861] [INSPIRE].

    Article  ADS  Google Scholar 

  43. C. Csáki, Y. Shirman and J. Terning, A Seiberg dual for the MSSM: partially composite W and Z, arXiv:1106.3074 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathaniel Craig.

Additional information

ArXiv ePrint: 1106.2164

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, N., Stolarski, D. & Thaler, J. A fat Higgs with a magnetic personality. J. High Energ. Phys. 2011, 145 (2011). https://doi.org/10.1007/JHEP11(2011)145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)145

Keywords

Navigation