Skip to main content
Log in

Holographic symmetry-breaking phases in AdS3/CFT2

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this note we study the symmetry-breaking phases of 3D gravity coupled to matter. In particular, we consider black holes with scalar hair as a model of symmetrybreaking phases of a strongly coupled 1 + 1 dimensional CFT. In the case of a discrete symmetry, we show that these theories admit phases of broken symmetry and study the thermodynamics of these phases. We also demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry breaking at low temperature. The apparent contradiction with the Coleman-Mermin-Wagner theorem is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  6. S.S. Gubser and I. Mitra, Instability of charged black holes in Anti-de Sitter space, hep-th/0009126 [INSPIRE].

  7. S.S. Gubser and I. Mitra, The Evolution of unstable black holes in anti-de Sitter space, JHEP 08 (2001) 018 [hep-th/0011127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121 [hep-th/0505189] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. F. Denef and S.A. Hartnoll, Landscape of superconducting membranes, Phys. Rev. D 79 (2009)126008 [arXiv:0901.1160] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.T. Horowitz and M.M. Roberts, Holographic Superconductors with Various Condensates, Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].

    ADS  Google Scholar 

  12. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008)015 [arXiv:0810.1563] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. Henneaux, C. Martinez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev. D 65 (2002) 104007 [hep-th/0201170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. C. Martinez, C. Teitelboim and J. Zanelli, Charged rotating black hole in three space-time dimensions, Phys. Rev. D 61 (2000) 104013 [hep-th/9912259] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. D. Maity, S. Sarkar, N. Sircar, B. Sathiapalan and R. Shankar, Properties of CFTs dual to Charged BTZ black-hole, Nucl. Phys. B 839 (2010) 526 [arXiv:0909.4051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Hohenberg, Existence of Long-Range Order in One and Two Dimensions, Phys. Rev. 158 (1967)383 [INSPIRE].

    Article  ADS  Google Scholar 

  20. S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973)259 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. E. Witten, Chiral Symmetry, the 1/n Expansion and the SU(N ) Thirring Model, Nucl. Phys. B 145 (1978) 110 [INSPIRE].

    Article  ADS  Google Scholar 

  22. D. Anninos, S.A. Hartnoll and N. Iqbal, Holography and the Coleman-Mermin-Wagner theorem, Phys. Rev. D 82 (2010) 066008 [arXiv:1005.1973] [INSPIRE].

    ADS  Google Scholar 

  23. J. Ren, One-dimensional holographic superconductor from AdS 3 /CF T 2 correspondence, JHEP 11 (2010) 055 [arXiv:1008.3904] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G.T. Horowitz and M.M. Roberts, Zero Temperature Limit of Holographic Superconductors, JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Buchel and C. Pagnutti, Exotic Hairy Black Holes, Nucl. Phys. B 824 (2010) 85 [arXiv:0904.1716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Chubukov, Order from disorder in a kagome antiferromagnet, Phys. Rev. Lett 69 (1992) 832.

    Article  ADS  Google Scholar 

  27. J. Gegenberg, C. Martinez and R. Troncoso, A Finite action for three-dimensional gravity with a minimally coupled scalar field, Phys. Rev. D 67 (2003) 084007 [hep-th/0301190] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. D. Marolf and S.F. Ross, Boundary Conditions and New Dualities: Vector Fields in AdS/CFT, JHEP 11 (2006) 085 [hep-th/0606113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Buchel and C. Pagnutti, Correlated stability conjecture revisited, Phys. Lett. B 697 (2011) 168 [arXiv:1010.5748] [INSPIRE].

    ADS  Google Scholar 

  30. K. Skenderis and M. Taylor, Fuzzball solutions and D1 − D5 microstates, Phys. Rev. Lett. 98 (2007)071601 [hep-th/0609154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Lashkari.

Additional information

ArXiv ePrint: 1011.3520

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lashkari, N. Holographic symmetry-breaking phases in AdS3/CFT2 . J. High Energ. Phys. 2011, 104 (2011). https://doi.org/10.1007/JHEP11(2011)104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)104

Keywords

Navigation