Skip to main content
Log in

The structure of \( \mathcal{N} = {2} \) supersymmetric nonlinear sigma models in AdS4

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a detailed study of the most general \( \mathcal{N} = {2} \) supersymmetric sigma models in four-dimensional anti-de Sitter space (AdS4) formulated in terms of \( \mathcal{N} = 1 \) chiral superfields. The target space is demonstrated to be a non-compact hyperkähler manifold restricted to possess a special Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures and necessarily leaves one of them invariant. All hyperkähler cones, that is the target spaces of \( \mathcal{N} = {2} \) superconformal sigma models, prove to possess such a vector field that belongs to the Lie algebra of an isometry group SU(2) acting by rotations on the complex structures. A unique property of the \( \mathcal{N} = {2} \) sigmamodelsconstructedisthatthealgebraofOSp(2|4)transformationsclosesoff the mass shell. We uncover the underlying \( \mathcal{N} = {2} \) superfield formulation for the \( \mathcal{N} = {2} \) sigma models constructed and compute the associated \( \mathcal{N} = {2} \) supercurrent. We give a special analysis of the most general systems of self-interacting \( \mathcal{N} = {2} \) tensor multiplets in AdS4 and their dual sigma models realized in terms of \( \mathcal{N} = 1 \) chiral multiplets. We also briefly discuss the relationship between our results on \( \mathcal{N} = {2} \) supersymmetric sigma models formulated in the \( \mathcal{N} = 1 \) AdS superspace and the off-shell sigma models constructed in the \( \mathcal{N} = {2} \) AdS superspace in arXiv:0807.3368.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B 87 (1979) 203 [INSPIRE].

    ADS  Google Scholar 

  2. L. Álvarez-Gaumé and D.Z. Freedman, Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model, Commun. Math. Phys. 80 (1981) 443 [INSPIRE].

    Article  ADS  Google Scholar 

  3. L. Álvarez-Gaumé and D.Z. Freedman, Potentials for the supersymmetric nonlinear σ-model, Commun. Math. Phys. 91 (1983) 87 [INSPIRE].

    Article  ADS  Google Scholar 

  4. T.L. Curtright and D.Z. Freedman, Nonlinear σ-models with extended supersymmetry in four-dimensions, Phys. Lett. B 90 (1980) 71 [Erratum ibid. B 91 (1980) 487] [INSPIRE].

    ADS  Google Scholar 

  5. E. Sezgin and Y. Tanii, Superconformal σ-models in higher than two-dimensions, Nucl. Phys. B 443 (1995) 70 [hep-th/9412163] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Bergshoeff, S. Cecotti, H. Samtleben and E. Sezgin, Superconformal σ-models in three dimensions, Nucl. Phys. B 838 (2010) 266 [arXiv:1002.4411] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. S.M. Kuzenko, J.-H. Park, G. Tartaglino-Mazzucchelli and R. Unge, Off-shell superconformal nonlinear σ-models in three dimensions, JHEP 01 (2011) 146 [arXiv:1011.5727] [INSPIRE].

    Article  ADS  Google Scholar 

  8. G. Gibbons and P. Rychenkova, Cones, tri-Sasakian structures and superconformal invariance, Phys. Lett. B 443 (1998) 138 [hep-th/9809158] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. B. de Wit, B. Kleijn and S. Vandoren, Rigid \( \mathcal{N} = {2} \) superconformal hypermultiplets, in Supersymmetries and quantum symmetries, J. Wess and E.A. Ivanov eds., Lect. Notes Phys. 524 (1999) 37, Springer-Verlag, U.S.A. (1999) [hep-th/9808160] [INSPIRE].

  10. B. de Wit, B. Kleijn and S. Vandoren, Superconformal hypermultiplets, Nucl. Phys. B 568 (2000) 475 [hep-th/9909228] [INSPIRE].

    Article  ADS  Google Scholar 

  11. B. de Wit, M. Roček and S. Vandoren, Hypermultiplets, hyperKähler cones and quaternion Kähler geometry, JHEP 02 (2001) 039 [hep-th/0101161] [INSPIRE].

    Article  Google Scholar 

  12. A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained \( \mathcal{N} = {2} \) matter, Yang-Mills and supergravity theories in harmonic superspace, Class. Quant. Grav. 1 (1984) 469 [INSPIRE].

    Article  ADS  Google Scholar 

  13. A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S. Sokatchev, Harmonic superspace, Cambridge University Press, Cambridge U.K. (2001).

    Book  MATH  Google Scholar 

  14. A. Karlhede, U. Lindström and M. Roček, Selfinteracting tensor multiplets in \( \mathcal{N} = {2} \) superspace, Phys. Lett. B 147 (1984) 297 [INSPIRE].

    ADS  Google Scholar 

  15. U. Lindström and M. Roček, New hyperKähler metrics and new supermultiplets, Commun. Math. Phys. 115 (1988) 21 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. U. Lindström and M. Roček, \( \mathcal{N} = {2} \) super Yang-Mills theory in projective superspace, Commun. Math. Phys. 128 (1990) 191 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. C. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ-models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  18. U. Lindström and M. Roček, Scalar tensor duality and \( \mathcal{N} = 1 \) , \( \mathcal{N} = {2} \) nonlinear σ-models, Nucl. Phys. B 222 (1983) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Bagger and C. Xiong, \( \mathcal{N} = {2} \) nonlinear σ-models in \( \mathcal{N} = 1 \) superspace: four and five dimensions, hep-th/0601165 [INSPIRE].

  20. S.M. Kuzenko, \( \mathcal{N} = {2} \) supersymmetric σ-models and duality, JHEP 01 (2010) 115 [arXiv:0910.5771] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Butter and S.M. Kuzenko, \( \mathcal{N} = {2} \) AdS supergravity and supercurrents, JHEP 07 (2011) 081 [arXiv:1104.2153] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Adams, H. Jockers, V. Kumar and J.M. Lapan, \( \mathcal{N} = 1 \) σ-models in AdS 4 , arXiv:1104.3155 [INSPIRE].

  23. G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

    Article  ADS  Google Scholar 

  24. D. Butter and S.M. Kuzenko, \( \mathcal{N} = {2} \) supersymmetric σ-models in AdS, Phys. Lett. B 703 (2011) 620 [arXiv:1105.3111] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. B. Keck, An alternative class of supersymmetries, J. Phys. A A 8 (1975) 1819 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. B. Zumino, Nonlinear realization of supersymmetry in de Sitter space, Nucl. Phys. B 127 (1977) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  27. E.A. Ivanov and A.S. Sorin, Superfield formulation of OSp(1, 4) supersymmetry, J. Phys. A 13 (1980) 1159 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Field theory in 4D \( \mathcal{N} = {2} \) conformally flat superspace, JHEP 10 (2008) 001 [arXiv:0807.3368] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, 4D \( \mathcal{N} = {2} \) supergravity and projective superspace, JHEP 09 (2008) 051 [arXiv:0805.4683] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Kuzenko, U. Lindström, M. Roček and G. Tartaglino-Mazzucchelli, On conformal supergravity and projective superspace, JHEP 08 (2009) 023 [arXiv:0905.0063] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Wess, Supersymmetry and internal symmetry, Acta Phys. Austriaca 41 (1975) 409 [INSPIRE].

    MathSciNet  Google Scholar 

  32. B. de Wit and J. van Holten, Multiplets of linearized SO(2) supergravity, Nucl. Phys. B 155 (1979) 530 [INSPIRE].

    Article  ADS  Google Scholar 

  33. P. Breitenlohner and M.F. Sohnius, Superfields, auxiliary fields, and tensor calculus for \( \mathcal{N} = {2} \) extended supergravity, Nucl. Phys. B 165 (1980) 483 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. B. de Wit, J. van Holten and A. Van Proeyen, Transformation rules of \( \mathcal{N} = {2} \) supergravity multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].

    Article  ADS  Google Scholar 

  35. M.F. Sohnius, K.S. Stelle and P.C. West, Representations of extended supersymmetry, in Superspace and Supergravity, S.W. Hawking and M. Roček eds., Cambridge University Press, Cambridge U.K. (1981), pg. 283.

    Google Scholar 

  36. W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett. B 85 (1979) 333 [INSPIRE].

    ADS  Google Scholar 

  37. E.T. Whittaker, On the partial differential equations of mathematical physics, Math. Ann. 57 (1903) 333.

    Article  MathSciNet  MATH  Google Scholar 

  38. E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th edition, Cambridge University Press, Cambridge U.K. (1927).

    MATH  Google Scholar 

  39. S.M. Kuzenko, On superconformal projective hypermultiplets, JHEP 12 (2007) 010 [arXiv:0710.1479] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. S.M. Kuzenko, U. Lindström and R. von Unge, New supersymmetric σ-model duality, JHEP 10 (2010) 072 [arXiv:1006.2299] [INSPIRE].

    Article  ADS  Google Scholar 

  41. I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity or a walk through superspace, IOP, Bristol U.K. (1998).

    MATH  Google Scholar 

  42. B. de Wit, R. Philippe and A. Van Proeyen, The improved tensor multiplet in \( \mathcal{N} = {2} \) supergravity, Nucl. Phys. B 219 (1983) 143 [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. de Wit and M. Roček, Improved tensor multiplets, Phys. Lett. B 109 (1982) 439 [INSPIRE].

    ADS  Google Scholar 

  44. J. Gates, S.James, S.M. Kuzenko and A.G. Sibiryakov, \( \mathcal{N} = {2} \) supersymmetry of higher superspin massless theories, Phys. Lett. B 412 (1997) 59 [hep-th/9609141] [INSPIRE].

    ADS  Google Scholar 

  45. J. Gates, S.James, S.M. Kuzenko and A.G. Sibiryakov, Towards a unified theory of massless superfields of all superspins, Phys. Lett. B 394 (1997) 343 [hep-th/9611193] [INSPIRE].

    ADS  Google Scholar 

  46. A.A. Rosly, Super Yang-Mills constraints as integrability conditions (in Russian), in Proceedings of the International Seminar on Group Theoretical Methods in Physics, Zvenigorod Russia (1982), M.A. Markov ed., volume 1, Nauka, Moscow Russia (1983), pg. 263.

  47. A. Roslyi and A.S. Schwarz, Supersymmetry in a space with auxiliary dimensions, Commun. Math. Phys. 105 (1986) 645 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. N.J. Hitchin, A. Karlhede, U. Lindström and M. Roček, HyperKähler metrics and supersymmetry, Commun. Math. Phys. 108 (1987) 535 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. D. Butter and S.M. Kuzenko, \( \mathcal{N} = {2} \) supersymmetric σ-models in AdS, Phys. Lett. B 703 (2011) 620 [arXiv:1105.3111] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. S. Ferrara and B. Zumino, Transformation properties of the supercurrent, Nucl. Phys. B 87 (1975) 207 [INSPIRE].

    Article  ADS  Google Scholar 

  51. Z. Komargodski and N. Seiberg, Comments on supercurrent multiplets, supersymmetric field theories and supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Bagger and E. Witten, Matter couplings in \( \mathcal{N} = {2} \) supergravity, Nucl. Phys. B 222 (1983) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. A.L. Besse, Einstein manifolds, Springer, Berlin Germany (2008).

    MATH  Google Scholar 

  54. J. Bagger and E. Witten, The gauge invariant supersymmetric nonlinear σ-model, Phys. Lett. B 118 (1982) 103 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  55. J. Bagger and C. Xiong, AdS 5 supersymmetry in \( \mathcal{N} = 1 \) superspace, JHEP 07 (2011) 119 [arXiv:1105.4852] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Bagger and J. Li, Supersymmetric nonlinear σ-model in AdS 5 , Phys. Lett. B 702 (2011) 291 [arXiv:1106.2343] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  57. G. Bonneau and G. Valent, Local heterotic geometry in holomorphic coordinates, Class. Quant. Grav. 11 (1994) 1133 [hep-th/9401003] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. P. Fayet, Fermi-Bose hypersymmetry, Nucl. Phys. B 113 (1976) 135 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. M. Sohnius, Supersymmetry and central charges, Nucl. Phys. B 138 (1978) 109 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. G. Sierra and P. Townsend, The hyperKähler supersymmetric σ-model in six-dimensions, Phys. Lett. B 124 (1983) 497 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. G. Sierra and P. Townsend, The gauge invariant \( \mathcal{N} = {2} \) supersymmetric σ-model with general scalar potential, Nucl. Phys. B 233 (1984) 289 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. D. Butter and S.M. Kuzenko, A dual formulation of supergravity-matter theories, Nucl. Phys. B 854 (2012) 1 [arXiv:1106.3038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  63. D. Butter and S.M. Kuzenko, \( \mathcal{N} = {2} \) supergravity and supercurrents, JHEP 12 (2010) 080 [arXiv:1011.0339] [INSPIRE].

    Article  ADS  Google Scholar 

  64. Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos term in field theory and supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. K.R. Dienes and B. Thomas, On the inconsistency of Fayet-Iliopoulos terms in supergravity theories, Phys. Rev. D 81 (2010) 065023 [arXiv:0911.0677] [INSPIRE].

    ADS  Google Scholar 

  66. S.M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality, Phys. Rev. D 81 (2010) 085036 [arXiv:0911.5190] [INSPIRE].

    ADS  Google Scholar 

  67. S.M. Kuzenko, Variant supercurrent multiplets, JHEP 04 (2010) 022 [arXiv:1002.4932] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. D. Butter, Conserved supercurrents and Fayet-Iliopoulos terms in supergravity, arXiv:1003.0249 [INSPIRE].

  69. S. Zheng and J.-H. Huang, Variant supercurrents and linearized supergravity, Class. Quant. Grav. 28 (2011) 075012 [arXiv:1007.3092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. S.M. Kuzenko, Variant supercurrents and Nöther procedure, Eur. Phys. J. C 71 (2011) 1513 [arXiv:1008.1877] [INSPIRE].

    ADS  Google Scholar 

  71. D. Butter and S.M. Kuzenko, \( \mathcal{N} = {2} \) supergravity and supercurrents, JHEP 12 (2010) 080 [arXiv:1011.0339] [INSPIRE].

    Article  ADS  Google Scholar 

  72. T.T. Dumitrescu and N. Seiberg, Supercurrents and brane currents in diverse dimensions, JHEP 07 (2011) 095 [arXiv:1106.0031] [INSPIRE].

    Article  ADS  Google Scholar 

  73. J. Gates, S.James and S.M. Kuzenko, The CNM hypermultiplet nexus, Nucl. Phys. B 543 (1999) 122 [hep-th/9810137] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Gates, S.James and S.M. Kuzenko, 4D, \( \mathcal{N} = {2} \) supersymmetric off-shell σ-models on the cotangent bundles of Kähler manifolds, Fortsch. Phys. 48 (2000) 115 [hep-th/9903013] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. M. Arai and M. Nitta, Hyper-Kähler σ-models on (co)tangent bundles with SO(N ) isometry, Nucl. Phys. B 745 (2006) 208 [hep-th/0602277] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  76. M. Arai, S.M. Kuzenko and U. Lindström, HyperKähler σ-models on cotangent bundles of Hermitian symmetric spaces using projective superspace, JHEP 02 (2007) 100 [hep-th/0612174] [INSPIRE].

    Article  ADS  Google Scholar 

  77. M. Arai, S.M. Kuzenko and U. Lindström, Polar supermultiplets, Hermitian symmetric spaces and hyperKähler metrics, JHEP 12 (2007) 008 [arXiv:0709.2633] [INSPIRE].

    Article  ADS  Google Scholar 

  78. S.M. Kuzenko and J. Novak, Chiral formulation for hyperKähler σ-models on cotangent bundles of symmetric spaces, JHEP 12 (2008) 072 [arXiv:0811.0218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. S.M. Kuzenko and G. Tartaglino-Mazzucchelli, Conformally flat supergeometry in five dimensions, JHEP 06 (2008) 097 [arXiv:0804.1219] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. S.M. Kuzenko and S. Theisen, Correlation functions of conserved currents in \( \mathcal{N} = {2} \) superconformal theory, Class. Quant. Grav. 17 (2000) 665 [hep-th/9907107] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. J.-H. Park, Superconformal symmetry and correlation functions, Nucl. Phys. B 559 (1999) 455 [hep-th/9903230] [INSPIRE].

    Article  ADS  Google Scholar 

  82. I.A. Bandos, E. Ivanov, J. Lukierski and D. Sorokin, On the superconformal flatness of AdS superspaces, JHEP 06 (2002) 040 [hep-th/0205104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  83. P. Binetruy, G. Girardi and R. Grimm, Supergravity couplings: a geometric formulation, Phys. Rept. 343 (2001) 255 [hep-th/0005225] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  85. S. Kuzenko and A. Sibiryakov, Free massless higher superspin superfields on the anti-de Sitter superspace, Phys. Atom. Nucl. 57 (1994) 1257 [Yad. Fiz. 57 (1994) 1326] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Butter.

Additional information

ArXiv ePrint: 1108.5290

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butter, D., Kuzenko, S.M. The structure of \( \mathcal{N} = {2} \) supersymmetric nonlinear sigma models in AdS4 . J. High Energ. Phys. 2011, 80 (2011). https://doi.org/10.1007/JHEP11(2011)080

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)080

Keywords

Navigation