Skip to main content
Log in

Improving the sensitivity of Higgs boson searches in the golden channel

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

A bstract

Leptonic decays of the Higgs boson in the ZZ (*) channel yield what is known as the golden channel due to its clean signature and good total invariant mass resolution. In addition, the full kinematic distribution of the decay products can be reconstructed, which, nonetheless, is not taken into account in traditional search strategy relying only on measurements of the total invariant mass. In this work we implement a type of multivariate analysis known as the matrix element method, which exploits differences in the full production and decay matrix elements between the Higgs boson and the dominant irreducible background from \( q\bar{q} \to Z{Z^{{( * )}}} \). Analytic expressions of the differential distributions for both the signal and the background are also presented. We perform a study for the Large Hadron Collider at \( \sqrt {s} = 7\,\,{\text{TeV}} \) for Higgs masses between 175 and 350 GeV. We find that, with an integrated luminosity of 2.5 fb−1 or higher, improvements in the order of 10–20% could be obtained for both discovery significance and exclusion limits in the high mass region, where the differences in the angular correlations between signal and background are most pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  2. CDF, D0 collaborations, Tevatron New Phenomena, Higgs Working Group, Combined CDF and D0 upper limits on standard model Higgs boson production with up to 8.6 fb −1 of Data, arXiv:1107.5518 [INSPIRE].

  3. ATLAS collaboration, Combined standard model Higgs boson searches in pp collisions at \( \sqrt {s} = 7\,\,TeV \) with the ATLAS experiment at the LHC, ATLAS-CONF-2011-112 (2011).

  4. CMS collaboration, Search for standard model Higgs boson in pp collisions at \( \sqrt {s} = 7\,\,TeV \), CMS-PAS-HIG-11-011 (2011).

  5. P.C. Bhat, Advanced analysis methods in particle physics, FERMILAB-CONF-2001-287 (2001), hep-ex/0106099.

  6. K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].

    Article  ADS  Google Scholar 

  7. K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 2: mass spectra for 2 → 2 processes, J. Phys. Soc. Jap. 60 (1991) 836 [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Kondo, T. Chikamatsu and S. Kim, Dynamical likelihood method for reconstruction of events with missing momentum. 3: analysis of a CDF high p T eμ event as \( t\bar{t} \) production, J. Phys. Soc. Jap. 62 (1993) 1177 [INSPIRE].

    Article  ADS  Google Scholar 

  9. R. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [INSPIRE].

    ADS  Google Scholar 

  10. R. Dalitz and G.R. Goldstein, Analysis of top-antitop production and dilepton decay events and the top quark mass, Phys. Lett. B 287 (1992) 225 [INSPIRE].

    ADS  Google Scholar 

  11. G.R. Goldstein, K. Sliwa and R. Dalitz, On observing top quark production at the Tevatron, Phys. Rev. D 47 (1993) 967 [hep-ph/9205246] [INSPIRE].

    ADS  Google Scholar 

  12. R. Dalitz and G.R. Goldstein, Where is top?, Int. J. Mod. Phys. A 9 (1994) 635 [hep-ph/9308345] [INSPIRE].

    ADS  Google Scholar 

  13. M.F. Canelli, Helicity of the W boson in single-lepton tt events, FERMILAB-THESIS-2003-22 (2003).

  14. K. Kondo, Dynamical likelihood method and top quark mass measurement at CDF, J. Phys. Conf. Ser. 53 (2006) 202 [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Artoisenet and O. Mattelaer, MadWeight: automatic event reweighting with matrix elements, PoS(CHARGED2008)025.

  16. J. Alwall, A. Freitas and O. Mattelaer, Measuring sparticles with the matrix element, AIP Conf. Proc. 1200 (2010) 442 [arXiv:0910.2522] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Alwall, A. Freitas and O. Mattelaer, The matrix element method and QCD radiation, Phys. Rev. D 83 (2011) 074010 [arXiv:1010.2263] [INSPIRE].

    ADS  Google Scholar 

  19. C.-Y. Chen and A. Freitas, General analysis of signals with two leptons and missing energy at the Large Hadron Collider, JHEP 02 (2011) 002 [arXiv:1011.5276] [INSPIRE].

    Article  ADS  Google Scholar 

  20. I. Volobouev, Matrix element method in HEP: transfer functions, efficiencies and likelihood normalization, arXiv:1101.2259 [INSPIRE].

  21. D0 collaboration, B. Abbott et al., Measurement of the top quark mass in the dilepton channel, Phys. Rev. D 60 (1999) 052001 [hep-ex/9808029] [INSPIRE].

    ADS  Google Scholar 

  22. D0 collaboration, V. Abazov et al., A precision measurement of the mass of the top quark, Nature 429 (2004) 638 [hep-ex/0406031] [INSPIRE].

    Article  ADS  Google Scholar 

  23. CDF collaboration, A. Abulencia et al., Top quark mass measurement from dilepton events at CDF II with the matrix-element method, Phys. Rev. D 74 (2006) 032009 [hep-ex/0605118] [INSPIRE].

    ADS  Google Scholar 

  24. D0 collaboration, V. Abazov et al., Evidence for production of single top quarks, Phys. Rev. D 78 (2008) 012005 [arXiv:0803.0739] [INSPIRE].

    ADS  Google Scholar 

  25. CDF collaboration, T. Aaltonen et al., Measurement of the single top quark production cross section at CDF, Phys. Rev. Lett. 101 (2008) 252001 [arXiv:0809.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  26. F. Fiedler, A. Grohsjean, P. Haefner and P. Schieferdecker, The matrix element method and its application in measurements of the top quark mass, Nucl. Instrum. Meth. A 624 (2010) 203 [arXiv:1003.1316] [INSPIRE].

    ADS  Google Scholar 

  27. CDF collaboration, T. Aaltonen et al., Measurement of the top-quark mass in the lepton+jets channel using a matrix element technique with the CDF II detector, Phys. Rev. D (2011) [arXiv:1108.1601] [INSPIRE].

  28. CMS collaboration, Search for the Higgs boson in the fully leptonic W + W final state, CMS-PAS-HIG-11-003 (2011).

  29. CMS collaboration, Search for a standard model Higgs boson in the decay channel \( H \to Z{Z^{{( * )}}} \to {4}\ell \), CMS-PAS-HIG-11-004 (2011).

  30. T. Matsuura and J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].

    Google Scholar 

  31. S. Choi, . Miller, D.J., M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

    ADS  Google Scholar 

  32. C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H \to ZZ \to l_1^{ + }l_1^{ - }l_2^{ + }l_2^{ - } \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].

    ADS  Google Scholar 

  33. W.-Y. Keung, I. Low and J. Shu, Landau-Yang theorem and decays of a Z boson into two Z bosons, Phys. Rev. Lett. 101 (2008) 091802 [arXiv:0806.2864] [INSPIRE].

    Article  ADS  Google Scholar 

  34. Q.-H. Cao, C. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].

    ADS  Google Scholar 

  35. Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].

    ADS  Google Scholar 

  36. A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  37. J. Gunion and Z. Kunszt, Lepton correlations in gauge boson pair production and decay, Phys. Rev. D 33 (1986) 665 [INSPIRE].

    ADS  Google Scholar 

  38. M.J. Duncan, G.L. Kane and W. Repko, WW physics at future colliders, Nucl. Phys. B 272 (1986) 517 [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Hagiwara, R. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e → W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  40. K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  41. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, U.S.A. (1995), p. 842.

  42. B.A. Kniehl, Radiative corrections for H → ZZ in the standard model, Nucl. Phys. B 352 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W , or \( t\bar{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].

    ADS  Google Scholar 

  44. V.D. Barger, K.-m. Cheung, A. Djouadi, B.A. Kniehl and P. Zerwas, Higgs bosons: intermediate mass range at e + e colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].

    ADS  Google Scholar 

  45. K. Hagiwara, S. Ishihara, J. Kamoshita and B.A. Kniehl, Prospects of measuring general Higgs couplings at e + e linear colliders, Eur. Phys. J. C 14 (2000) 457 [hep-ph/0002043] [INSPIRE].

    Article  ADS  Google Scholar 

  46. V. Barger, T. Han, P. Langacker, B. McElrath and P. Zerwas, Effects of genuine dimension-six Higgs operators, Phys. Rev. D 67 (2003) 115001 [hep-ph/0301097] [INSPIRE].

    ADS  Google Scholar 

  47. R.M. Godbole, . Miller, D.J. and M. Muhlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S. Dutta, K. Hagiwara and Y. Matsumoto, Measuring the Higgs-vector boson couplings at linear e + e collider, Phys. Rev. D 78 (2008) 115016 [arXiv:0808.0477] [INSPIRE].

    ADS  Google Scholar 

  49. V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Anomalous Higgs boson couplings in vector boson fusion at the CERN LHC, Phys. Rev. D 74 (2006) 095001 [hep-ph/0609075] [INSPIRE].

    ADS  Google Scholar 

  50. K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].

    Article  ADS  Google Scholar 

  51. I. Low and J. Lykken, Revealing the electroweak properties of a new scalar resonance, JHEP 10 (2010) 053 [arXiv:1005.0872] [INSPIRE].

    Article  ADS  Google Scholar 

  52. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  53. H. Muruyama, Notes on phase space, lecture notes, avaiable at http://hitoshi.berkeley.edu/233B/phasespace.pdf.

  54. R.J. Barlow, Extended maximum likelihood, Nucl. Instrum. Meth. A 297 (1990) 496 [INSPIRE].

  55. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  56. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  57. V. Bartsch and G. Quast, Expected signal observability at future experiments, CMS-NOTE-2005-004 (2005).

  58. CTEQ collaboration, H. Lai et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, Eur. Phys. J. C 12 (2000) 375 [hep-ph/9903282] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  60. CMS collaboration, G.L. Bayatian et al., CMS physics: technical design report. Volume I: detector performance and software, CMS-TDR-008-1 (2006).

  61. S. Catani, D. de Florian and M. Grazzini, Direct Higgs production and jet veto at the Tevatron and the LHC in NNLO QCD, JHEP 01 (2002) 015 [hep-ph/0111164] [INSPIRE].

    Article  ADS  Google Scholar 

  62. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: Differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  63. G. Davatz et al., Combining Monte Carlo generators with next-to-next-to-leading order calculations: event reweighting for Higgs boson production at the LHC, JHEP 07 (2006) 037 [hep-ph/0604077] [INSPIRE].

    Article  ADS  Google Scholar 

  64. C. Anastasiou, G. Dissertori and F. Stockli, NNLO QCD predictions for the H —¿ WW —¿ l nu l nu signal at the LHC, JHEP 09 (2007) 018 [arXiv:0707.2373] [INSPIRE].

    Article  ADS  Google Scholar 

  65. C. Anastasiou, G. Dissertori, F. Stockli and B.R. Webber, QCD radiation effects on the H → WW → lνlν signal at the LHC, JHEP 03 (2008) 017 [arXiv:0801.2682] [INSPIRE].

    Article  ADS  Google Scholar 

  66. M. Grazzini, NNLO predictions for the Higgs boson signal in the H → W W → lνlν and H → ZZ → 4 l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Anastasiou, G. Dissertori, M. Grazzini, F. Stockli and B.R. Webber, Perturbative QCD effects and the search for a H → W W → lνlν signal at the Tevatron, JHEP 08 (2009) 099 [arXiv:0905.3529] [INSPIRE].

    Article  ADS  Google Scholar 

  68. E.L. Berger, Q.-H. Cao, C. Jackson, T. Liu and G. Shaughnessy, Higgs boson search sensitivity in the H → WW dilepton decay mode at \( \sqrt {s} = 7 \) and 10 TeV, Phys. Rev. D 82 (2010) 053003 [arXiv:1003.3875] [INSPIRE].

    ADS  Google Scholar 

  69. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].

    Article  ADS  Google Scholar 

  70. I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, arXiv:1107.2117 [INSPIRE].

  71. V.D. Barger, J. Lopez and W. Putikka, Next-to-leading logarithm QCD corrections for \( q\bar{q} \to ZZ,{W^{ + }}{W^{ - }},{W^{\pm }}Z \) subprocesses, Int. J. Mod. Phys. A 3 (1988) 2181 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Gainer.

Additional information

ArXiv ePrint: 1108.2274

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gainer, J.S., Kumar, K., Low, I. et al. Improving the sensitivity of Higgs boson searches in the golden channel. J. High Energ. Phys. 2011, 27 (2011). https://doi.org/10.1007/JHEP11(2011)027

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2011)027

K eywords

Navigation