# Stringy horizons II

## Abstract

We show that the spectrum of normalizable states on a Euclidean SL(2, R)/U(1) black hole exhibits a duality between oscillator states and wound strings. This duality generalizes the identification between a normalizable mode of dilaton gravity on the cigar and a mode of the tachyon with winding number one around the Euclidean time circle, which plays an important role in the FZZ correspondence. It implies that normalizable states on a large Euclidean black hole have support at widely separated scales. In particular, localized states that are extended over the cap of the cigar (the Euclidian analog of the black hole atmosphere) have a component that is localized near the tip of the cigar (the analog of the stretched horizon). As a consequence of this duality, the states exhibit a transition as a function of radial excitation level. From the perspective of a low energy probe, low lying states are naturally thought of as oscillator states in the black hole atmosphere, while at large excitation level they are naturally described as wound strings. As the excitation level increases, the size of the states first decreases and then increases. This behavior is expected to be a general feature of black hole horizons in string theory.

## Keywords

Black Holes Black Holes in String Theory Conformal Field Models in String Theory## Notes

### **Open Access**

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## References

- [1]J.D. Bekenstein,
*Black holes and entropy*,*Phys. Rev.***D 7**(1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar - [2]S.W. Hawking,
*Particle creation by black holes*,*Commun. Math. Phys.***43**(1975) 199 [*Erratum ibid.***46**(1976) 206] [INSPIRE]. - [3]
- [4]J.L.F. Barbon and E. Rabinovici,
*Remarks on black hole instabilities and closed string tachyons*,*Found. Phys.***33**(2003) 145 [hep-th/0211212] [INSPIRE].MathSciNetCrossRefGoogle Scholar - [5]S. Elitzur, A. Forge and E. Rabinovici,
*Some global aspects of string compactifications*,*Nucl. Phys.***B 359**(1991) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [6]G. Mandal, A.M. Sengupta and S.R. Wadia,
*Classical solutions of two-dimensional string theory*,*Mod. Phys. Lett.***A 6**(1991) 1685 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [7]E. Witten,
*On string theory and black holes*,*Phys. Rev.***D 44**(1991) 314 [INSPIRE].ADSMathSciNetMATHGoogle Scholar - [8]R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde,
*String propagation in a black hole geometry*,*Nucl. Phys.***B 371**(1992) 269 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [9]A. Giveon and N. Itzhaki,
*String theory versus black hole complementarity*,*JHEP***12**(2012) 094 [arXiv:1208.3930] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [10]A. Giveon and N. Itzhaki,
*String theory at the tip of the cigar*,*JHEP***09**(2013) 079 [arXiv:1305.4799] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [11]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*Near-Hagedorn thermodynamics and random walks: a general formalism in curved backgrounds*,*JHEP***02**(2014) 127 [arXiv:1305.7443] [INSPIRE].ADSCrossRefGoogle Scholar - [12]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*Random walks in Rindler spacetime and string theory at the tip of the cigar*,*JHEP***03**(2014) 086 [arXiv:1307.3491] [INSPIRE].ADSCrossRefGoogle Scholar - [13]A. Giveon, N. Itzhaki and J. Troost,
*The black hole interior and a curious sum rule*,*JHEP***03**(2014) 063 [arXiv:1311.5189] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [14]A. Giveon, N. Itzhaki and J. Troost,
*Lessons on black holes from the elliptic genus*,*JHEP***04**(2014) 160 [arXiv:1401.3104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [15]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*The thermal scalar and random walks in AdS*_{3}*and BT Z*,*JHEP***06**(2014) 156 [arXiv:1402.2808] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [16]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*Near-Hagedorn thermodynamics and random walks — extensions and examples*,*JHEP***11**(2014) 107 [arXiv:1408.6999] [INSPIRE].ADSCrossRefGoogle Scholar - [17]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*On the relevance of the thermal scalar*,*JHEP***11**(2014) 157 [arXiv:1408.7012] [INSPIRE].ADSCrossRefGoogle Scholar - [18]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*Perturbative string thermodynamics near black hole horizons*,*JHEP***06**(2015) 167 [arXiv:1410.8009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [19]A. Giveon, N. Itzhaki and D. Kutasov,
*Stringy horizons*,*JHEP***06**(2015) 064 [arXiv:1502.03633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [20]G. Giribet and A. Ranjbar,
*Screening stringy horizons*,*Eur. Phys. J.***C 75**(2015) 490 [arXiv:1504.05044] [INSPIRE].ADSCrossRefGoogle Scholar - [21]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*The long string at the stretched horizon and the entropy of large non-extremal black holes*,*JHEP***02**(2016) 041 [arXiv:1505.04025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [22]R. Ben-Israel, A. Giveon, N. Itzhaki and L. Liram,
*Stringy horizons and UV/IR mixing*,*JHEP***11**(2015) 164 [arXiv:1506.07323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [23]T.G. Mertens,
*Hagedorn string thermodynamics in curved spacetimes and near black hole horizons*, arXiv:1506.07798 [INSPIRE]. - [24]
- [25]R. Ben-Israel, A. Giveon, N. Itzhaki and L. Liram,
*On the stringy Hartle-Hawking state*,*JHEP***03**(2016) 019 [arXiv:1512.01554] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [26]W. Cottrell and A. Hashimoto,
*Resolved gravity duals of N*= 4*quiver field theories in*2 + 1*dimensions*, arXiv:1602.04765 [INSPIRE]. - [27]V.A. Fateev, A.B. Zamolodchikov and Al.B. Zamolodchikov, unpublished.Google Scholar
- [28]V. Kazakov, I.K. Kostov and D. Kutasov,
*A matrix model for the two-dimensional black hole*,*Nucl. Phys.***B 622**(2002) 141 [hep-th/0101011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [29]A. Giveon and D. Kutasov,
*Little string theory in a double scaling limit*,*JHEP***10**(1999) 034 [hep-th/9909110] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [30]Y. Kazama and H. Suzuki,
*New N*= 2*superconformal field theories and superstring compactification*,*Nucl. Phys.***B 321**(1989) 232 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [31]A. Giveon, N. Itzhaki and D. Kutasov, to appear.Google Scholar
- [32]J.M. Maldacena and H. Ooguri,
*Strings in AdS*_{3}*and*SL(2*, R*)*WZW model*1*: the spectrum*,*J. Math. Phys.***42**(2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [33]R. Argurio, A. Giveon and A. Shomer,
*Superstrings on AdS*_{3}*and symmetric products*,*JHEP***12**(2000) 003 [hep-th/0009242] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [34]M. Wakimoto,
*Fock representations of the affine lie algebra A*_{1}^{(1)},*Commun. Math. Phys.***104**(1986) 605 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [35]D. Bernard and G. Felder,
*Fock representations and BRST cohomology in*SL(2)*current algebra*,*Commun. Math. Phys.***127**(1990) 145 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar - [36]M. Bershadsky and D. Kutasov,
*Comment on gauged WZW theory*,*Phys. Lett.***B 266**(1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [37]A. Giveon, D. Kutasov and N. Seiberg,
*Comments on string theory on AdS*_{3},*Adv. Theor. Math. Phys.***2**(1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar - [38]J. Polchinski,
*String theory. Volume*2*: superstring theory and beyond*, section 10.4, Cambridge University Press, Cambridge U.K. (2005).Google Scholar - [39]G.T. Horowitz and J. Polchinski,
*A correspondence principle for black holes and strings*,*Phys. Rev.***D 55**(1997) 6189 [hep-th/9612146] [INSPIRE].ADSMathSciNetGoogle Scholar - [40]G.T. Horowitz and J. Polchinski,
*Selfgravitating fundamental strings*,*Phys. Rev.***D 57**(1998) 2557 [hep-th/9707170] [INSPIRE].ADSMathSciNetGoogle Scholar - [41]A. Giveon and D. Kutasov,
*Fundamental strings and black holes*,*JHEP***01**(2007) 071 [hep-th/0611062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar - [42]Y. Sugawara,
*“Analytic continuation” of N*= 2*minimal model*,*Prog. Theor. Exp. Phys.***2014**(2014) 043B02 [arXiv:1311.4708] [INSPIRE]. - [43]G. Giribet,
*Scattering of low lying states in the black hole atmosphere*,*Phys. Rev.***D 94**(2016) 026008 [*Addendum ibid.***D 94**(2016) 049902] [arXiv:1606.06919] [INSPIRE]. - [44]T.G. Mertens, H. Verschelde and V.I. Zakharov,
*String theory in polar coordinates and the vanishing of the one-loop Rindler entropy*,*JHEP***08**(2016) 113 [arXiv:1606.06632] [INSPIRE].ADSCrossRefGoogle Scholar