Advertisement

Journal of High Energy Physics

, 2016:157 | Cite as

Stringy horizons II

  • Amit Giveon
  • Nissan Itzhaki
  • David Kutasov
Open Access
Regular Article - Theoretical Physics

Abstract

We show that the spectrum of normalizable states on a Euclidean SL(2, R)/U(1) black hole exhibits a duality between oscillator states and wound strings. This duality generalizes the identification between a normalizable mode of dilaton gravity on the cigar and a mode of the tachyon with winding number one around the Euclidean time circle, which plays an important role in the FZZ correspondence. It implies that normalizable states on a large Euclidean black hole have support at widely separated scales. In particular, localized states that are extended over the cap of the cigar (the Euclidian analog of the black hole atmosphere) have a component that is localized near the tip of the cigar (the analog of the stretched horizon). As a consequence of this duality, the states exhibit a transition as a function of radial excitation level. From the perspective of a low energy probe, low lying states are naturally thought of as oscillator states in the black hole atmosphere, while at large excitation level they are naturally described as wound strings. As the excitation level increases, the size of the states first decreases and then increases. This behavior is expected to be a general feature of black hole horizons in string theory.

Keywords

Black Holes Black Holes in String Theory Conformal Field Models in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  3. [3]
    D. Kutasov, Accelerating branes and the string/black hole transition, hep-th/0509170 [INSPIRE].
  4. [4]
    J.L.F. Barbon and E. Rabinovici, Remarks on black hole instabilities and closed string tachyons, Found. Phys. 33 (2003) 145 [hep-th/0211212] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Elitzur, A. Forge and E. Rabinovici, Some global aspects of string compactifications, Nucl. Phys. B 359 (1991) 581 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Mandal, A.M. Sengupta and S.R. Wadia, Classical solutions of two-dimensional string theory, Mod. Phys. Lett. A 6 (1991) 1685 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry, Nucl. Phys. B 371 (1992) 269 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    A. Giveon and N. Itzhaki, String theory versus black hole complementarity, JHEP 12 (2012) 094 [arXiv:1208.3930] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    A. Giveon and N. Itzhaki, String theory at the tip of the cigar, JHEP 09 (2013) 079 [arXiv:1305.4799] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, Near-Hagedorn thermodynamics and random walks: a general formalism in curved backgrounds, JHEP 02 (2014) 127 [arXiv:1305.7443] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, Random walks in Rindler spacetime and string theory at the tip of the cigar, JHEP 03 (2014) 086 [arXiv:1307.3491] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Giveon, N. Itzhaki and J. Troost, The black hole interior and a curious sum rule, JHEP 03 (2014) 063 [arXiv:1311.5189] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Giveon, N. Itzhaki and J. Troost, Lessons on black holes from the elliptic genus, JHEP 04 (2014) 160 [arXiv:1401.3104] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, The thermal scalar and random walks in AdS 3 and BT Z, JHEP 06 (2014) 156 [arXiv:1402.2808] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, Near-Hagedorn thermodynamics and random walks — extensions and examples, JHEP 11 (2014) 107 [arXiv:1408.6999] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, On the relevance of the thermal scalar, JHEP 11 (2014) 157 [arXiv:1408.7012] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, Perturbative string thermodynamics near black hole horizons, JHEP 06 (2015) 167 [arXiv:1410.8009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A. Giveon, N. Itzhaki and D. Kutasov, Stringy horizons, JHEP 06 (2015) 064 [arXiv:1502.03633] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    G. Giribet and A. Ranjbar, Screening stringy horizons, Eur. Phys. J. C 75 (2015) 490 [arXiv:1504.05044] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, The long string at the stretched horizon and the entropy of large non-extremal black holes, JHEP 02 (2016) 041 [arXiv:1505.04025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Ben-Israel, A. Giveon, N. Itzhaki and L. Liram, Stringy horizons and UV/IR mixing, JHEP 11 (2015) 164 [arXiv:1506.07323] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    T.G. Mertens, Hagedorn string thermodynamics in curved spacetimes and near black hole horizons, arXiv:1506.07798 [INSPIRE].
  24. [24]
    J. Lin, Bulk locality from entanglement in gauge/gravity duality, arXiv:1510.02367 [INSPIRE].
  25. [25]
    R. Ben-Israel, A. Giveon, N. Itzhaki and L. Liram, On the stringy Hartle-Hawking state, JHEP 03 (2016) 019 [arXiv:1512.01554] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    W. Cottrell and A. Hashimoto, Resolved gravity duals of N = 4 quiver field theories in 2 + 1 dimensions, arXiv:1602.04765 [INSPIRE].
  27. [27]
    V.A. Fateev, A.B. Zamolodchikov and Al.B. Zamolodchikov, unpublished.Google Scholar
  28. [28]
    V. Kazakov, I.K. Kostov and D. Kutasov, A matrix model for the two-dimensional black hole, Nucl. Phys. B 622 (2002) 141 [hep-th/0101011] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Giveon and D. Kutasov, Little string theory in a double scaling limit, JHEP 10 (1999) 034 [hep-th/9909110] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Giveon, N. Itzhaki and D. Kutasov, to appear.Google Scholar
  32. [32]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL(2, R) WZW model 1: the spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    R. Argurio, A. Giveon and A. Shomer, Superstrings on AdS 3 and symmetric products, JHEP 12 (2000) 003 [hep-th/0009242] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Wakimoto, Fock representations of the affine lie algebra A 1(1), Commun. Math. Phys. 104 (1986) 605 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    D. Bernard and G. Felder, Fock representations and BRST cohomology in SL(2) current algebra, Commun. Math. Phys. 127 (1990) 145 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    M. Bershadsky and D. Kutasov, Comment on gauged WZW theory, Phys. Lett. B 266 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, section 10.4, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  39. [39]
    G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    G.T. Horowitz and J. Polchinski, Selfgravitating fundamental strings, Phys. Rev. D 57 (1998) 2557 [hep-th/9707170] [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    A. Giveon and D. Kutasov, Fundamental strings and black holes, JHEP 01 (2007) 071 [hep-th/0611062] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    Y. Sugawara, “Analytic continuation” of N = 2 minimal model, Prog. Theor. Exp. Phys. 2014 (2014) 043B02 [arXiv:1311.4708] [INSPIRE].
  43. [43]
    G. Giribet, Scattering of low lying states in the black hole atmosphere, Phys. Rev. D 94 (2016) 026008 [Addendum ibid. D 94 (2016) 049902] [arXiv:1606.06919] [INSPIRE].
  44. [44]
    T.G. Mertens, H. Verschelde and V.I. Zakharov, String theory in polar coordinates and the vanishing of the one-loop Rindler entropy, JHEP 08 (2016) 113 [arXiv:1606.06632] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Racah Institute of PhysicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Physics DepartmentTel-Aviv UniversityRamat-AvivIsrael
  3. 3.EFI and Department of PhysicsUniversity of ChicagoChicagoU.S.A.

Personalised recommendations