Advertisement

Journal of High Energy Physics

, 2016:153 | Cite as

Associated production of a quarkonium and a Z boson at one loop in a quark-hadron-duality approach

  • Jean-Philippe Lansberg
  • Hua-Sheng Shao
Open Access
Regular Article - Theoretical Physics

Abstract

In view of the large discrepancy about the associated production of a prompt J/ψ and a Z boson between the ATLAS data at \( \sqrt{s}=8 \) TeV and theoretical predictions for Single Parton Scattering (SPS) contributions, we perform an evaluation of the corresponding cross section at one loop accuracy (Next-to-Leading Order, NLO) in a quark-hadron-duality approach, also known as the Colour-Evaporation Model (CEM). This work is motivated by (i) the extremely disparate predictions based on the existing NRQCD fits conjugated with the absence of a full NLO NRQCD computation and (ii) the fact that we believe that such an evaluation provides a likely upper limit of the SPS cross section. In addition to these theory improvements, we argue that the ATLAS estimation of the Double Parton Scattering (DPS) yield may be underestimated by a factor as large as 3 which then reduces the size of the SPS yield extracted from the ATLAS data. Our NLO SPS evaluation also allows us to set an upper limit on σ eff driving the size of the DPS yield. Overall, the discrepancy between theory and experiment may be smaller than expected, which calls for further analyses by ATLAS and CMS, for which we provide predictions, and for full NLO computations in other models. As an interesting side product of our analysis, we have performed the first NLO computation of dσ/dP T for prompt single-J/ψ production in the CEM from which we have fit the CEM non-pertubative parameter at NLO using the most recent ATLAS data.

Keywords

NLO Computations QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CDF collaboration, D. Acosta et al., Search for associated production of Y and vector boson in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 90 (2003) 221803 [INSPIRE].
  2. [2]
    CDF collaboration, T. Aaltonen et al., Search for production of an Y(1S) meson in association with a W or Z boson using the full 1.96 TeV \( p\overline{p} \) collision data set at CDF, Phys. Rev. D 91 (2015) 052011 [arXiv:1412.4827] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of the production cross section of prompt J/ψ mesons in association with a W ± boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2014) 172 [arXiv:1401.2831] [INSPIRE].
  4. [4]
    ATLAS collaboration, Observation and measurements of the production of prompt and non-prompt J/ψ mesons in association with a Z boson in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 229 [arXiv:1412.6428] [INSPIRE].
  5. [5]
    D.P. Roy and K. Sridhar, J/ψ + γ production at the Tevatron energy, Phys. Lett. B 341 (1995) 413 [hep-ph/9407390] [INSPIRE].ADSGoogle Scholar
  6. [6]
    P. Mathews, K. Sridhar and R. Basu, J/ψ + γ production at the CERN LHC, Phys. Rev. D 60 (1999) 014009 [hep-ph/9901276] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Li and J.-X. Wang, Next-to-leading-order QCD corrections to J/ψ(Y) + γ production at the LHC, Phys. Lett. B 672 (2009) 51 [arXiv:0811.0963] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.P. Lansberg, Real next-to-next-to-leading-order QCD corrections to J/ψ and Y hadroproduction in association with a photon, Phys. Lett. B 679 (2009) 340 [arXiv:0901.4777] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Li and J.-X. Wang, Next-to-leading-order study of the associated production of J/ψ + γ at the LHC, Phys. Rev. D 89 (2014) 114018 [arXiv:1401.6918] [INSPIRE].ADSGoogle Scholar
  10. [10]
    M.A. Doncheski and C.S. Kim, Associated J/ψ + γ production as a probe of the polarized gluon distribution, Phys. Rev. D 49 (1994) 4463 [hep-ph/9303248] [INSPIRE].ADSGoogle Scholar
  11. [11]
    W.J. den Dunnen, J.P. Lansberg, C. Pisano and M. Schlegel, Accessing the transverse dynamics and polarization of gluons inside the proton at the LHC, Phys. Rev. Lett. 112 (2014) 212001 [arXiv:1401.7611] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M.N. Doroshenko, V.G. Kartvelishvili, E.G. Chikovani and S.M. Esakiya, Vector quarkonium in decays of heavy Higgs particles, Yad. Fiz. 46 (1987) 864 [Sov. J. Nucl. Phys. 46 (1987) 493] [INSPIRE].
  13. [13]
    G.T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, Higgs boson decays to quarkonia and the \( H\overline{c}c \) coupling, Phys. Rev. D 88 (2013) 053003 [arXiv:1306.5770] [INSPIRE].ADSGoogle Scholar
  14. [14]
    ATLAS collaboration, Search for Higgs and Z boson decays to J/ψγ and Y(nS)γ with the ATLAS detector, Phys. Rev. Lett. 114 (2015) 121801 [arXiv:1501.03276] [INSPIRE].
  15. [15]
    S. Mao, M. Wen-Gan, L. Gang, Z. Ren-You and G. Lei, QCD corrections to J/ψ plus Z 0 -boson production at the LHC, JHEP 02 (2011) 071 [Erratum ibid. 12 (2012) 010] [arXiv:1102.0398] [INSPIRE].
  16. [16]
    B. Gong, J.-P. Lansberg, C. Lorce and J. Wang, Next-to-leading-order QCD corrections to the yields and polarisations of J/ψ and Y directly produced in association with a Z boson at the LHC, JHEP 03 (2013) 115 [arXiv:1210.2430] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Li, M. Song, R.-Y. Zhang and W.-G. Ma, QCD corrections to J/ψ production in association with a W-boson at the LHC, Phys. Rev. D 83 (2011) 014001 [arXiv:1012.3798] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.P. Lansberg and C. Lorce, Reassessing the importance of the colour-singlet contributions to direct J/ψ + W production at the LHC and the Tevatron, Phys. Lett. B 726 (2013) 218 [Erratum ibid. B 738 (2014) 529] [arXiv:1303.5327] [INSPIRE].
  19. [19]
    S. Leontsinis, private communication.Google Scholar
  20. [20]
    NA3 collaboration, J. Badier et al., Evidence for ψψ production in π interactions at 150 GeV/c and 280 GeV/c, Phys. Lett. B 114 (1982) 457 [INSPIRE].
  21. [21]
    NA3 collaboration, J. Badier et al., ψψ production and limits on beauty meson production from 400 GeV/c protons, Phys. Lett. B 158 (1985) 85 [INSPIRE].
  22. [22]
    LHCb collaboration, Observation of J/ψ pair production in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 707 (2012) 52 [arXiv:1109.0963] [INSPIRE].
  23. [23]
    CMS collaboration, Measurement of prompt J/ψ pair production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 09 (2014) 094 [arXiv:1406.0484] [INSPIRE].
  24. [24]
    ATLAS collaboration, Measurement of the prompt J/ψ pair production cross-section in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2016-047, CERN, Geneva Switzerland (2016).
  25. [25]
    D0 collaboration, V.M. Abazov et al., Observation and studies of double J/ψ production at the Tevatron, Phys. Rev. D 90 (2014) 111101 [arXiv:1406.2380] [INSPIRE].
  26. [26]
    J.-P. Lansberg and H.-S. Shao, Production of J/ψ + η c versus J/ψ + J/ψ at the LHC: importance of real α s5 corrections, Phys. Rev. Lett. 111 (2013) 122001 [arXiv:1308.0474] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L.-P. Sun, H. Han and K.-T. Chao, Impact of J/ψ pair production at the LHC and predictions in nonrelativistic QCD, arXiv:1404.4042 [INSPIRE].
  28. [28]
    A.K. Likhoded, A.V. Luchinsky and S.V. Poslavsky, Production of J/ψ + χ c and J/ψ + J/ψ with real gluon emission at LHC, Phys. Rev. D 94 (2016) 054017 [arXiv:1606.06767] [INSPIRE].Google Scholar
  29. [29]
    J.-P. Lansberg and H.-S. Shao, J/ψ-pair production at large momenta: indications for double parton scatterings and large α s5 contributions, Phys. Lett. B 751 (2015) 479 [arXiv:1410.8822] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Z.-G. He and B.A. Kniehl, Complete nonrelativistic-QCD prediction for prompt double J/ψ hadroproduction, Phys. Rev. Lett. 115 (2015) 022002 [arXiv:1609.02786] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.P. Baranov and A.H. Rezaeian, Prompt double J/ψ production in proton-proton collisions at the LHC, Phys. Rev. D 93 (2016) 114011 [arXiv:1511.04089] [INSPIRE].ADSGoogle Scholar
  32. [32]
    D0 collaboration, V.M. Abazov et al., Evidence for simultaneous production of J/ψ and Y mesons, Phys. Rev. Lett. 116 (2016) 082002 [arXiv:1511.02428] [INSPIRE].
  33. [33]
    H.-S. Shao and Y.-J. Zhang, Complete study of hadroproduction of a Y meson associated with a prompt J/ψ, Phys. Rev. Lett. 117 (2016) 062001 [arXiv:1605.03061] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    LHCb collaboration, Observation of double charm production involving open charm in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 141 [Addendum ibid. 03 (2014) 108] [arXiv:1205.0975] [INSPIRE].
  35. [35]
    LHCb collaboration, Production of associated Y and open charm hadrons in pp collisions at \( \sqrt{s}=7 \) and 8 TeV via double parton scattering, JHEP 07 (2016) 052 [arXiv:1510.05949] [INSPIRE].
  36. [36]
    ATLAS collaboration, Measurement of hard double-parton interactions in W (→ ℓν) + 2 jet events at \( \sqrt{s}=7 \) TeV with the ATLAS detector, New J. Phys. 15 (2013) 033038 [arXiv:1301.6872] [INSPIRE].
  37. [37]
    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    LHCb collaboration, Measurement of the η c(1S) production cross-section in proton-proton collisions via the decay η c(1S) → \( p\overline{p} \), Eur. Phys. J. C 75 (2015) 311 [arXiv:1409.3612] [INSPIRE].
  39. [39]
    M. Butenschoen, Z.-G. He and B.A. Kniehl, η c production at the LHC challenges nonrelativistic-QCD factorization, Phys. Rev. Lett. 114 (2015) 092004 [arXiv:1411.5287] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    H.-F. Zhang, Z. Sun, W.-L. Sang and R. Li, Impact of η c hadroproduction data on charmonium production and polarization within NRQCD framework, Phys. Rev. Lett. 114 (2015) 092006 [arXiv:1412.0508] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Han, Y.-Q. Ma, C. Meng, H.-S. Shao and K.-T. Chao, η c production at LHC and indications on the understanding of J/ψ production, Phys. Rev. Lett. 114 (2015) 092005 [arXiv:1411.7350] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    P. Faccioli, V. Knünz, C. Lourenco, J. Seixas and H.K. Wöhri, Quarkonium production in the LHC era: a polarized perspective, Phys. Lett. B 736 (2014) 98 [arXiv:1403.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    G.T. Bodwin, H.S. Chung, U.-R. Kim and J. Lee, Fragmentation contributions to J/ψ production at the Tevatron and the LHC, Phys. Rev. Lett. 113 (2014) 022001 [arXiv:1403.3612] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Butenschoen and B.A. Kniehl, World data of J/ψ production consolidate NRQCD factorization at NLO, Phys. Rev. D 84 (2011) 051501 [arXiv:1105.0820] [INSPIRE].ADSGoogle Scholar
  45. [45]
    Y. Feng, J.-P. Lansberg and J.-X. Wang, Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies: complete one-loop analysis, Eur. Phys. J. C 75 (2015) 313 [arXiv:1504.00317] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G.T. Bodwin, E. Braaten and J. Lee, Comparison of the color-evaporation model and the NRQCD factorization approach in charmonium production, Phys. Rev. D 72 (2005) 014004 [hep-ph/0504014] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Edin, G. Ingelman and J. Rathsman, Quarkonium production at the Tevatron through soft color interactions, Phys. Rev. D 56 (1997) 7317 [hep-ph/9705311] [INSPIRE].ADSGoogle Scholar
  48. [48]
    J. Damet, G. Ingelman and C. Brenner Mariotto, Prompt J/ψ production at the LHC, JHEP 09 (2002) 014 [hep-ph/0111463] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Brenner Mariotto, M.B. Gay Ducati and G. Ingelman, Soft and hard QCD dynamics in hadroproduction of charmonium, Eur. Phys. J. C 23 (2002) 527 [hep-ph/0111379] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    J.P. Lansberg, J/ψ, ψand Y production at hadron colliders: a review, Int. J. Mod. Phys. A 21 (2006) 3857 [hep-ph/0602091] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    H. Fritzsch, Producing heavy quark flavors in hadronic collisions: a test of quantum chromodynamics, Phys. Lett. B 67 (1977) 217 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    F. Halzen, CVC for gluons and hadroproduction of quark flavors, Phys. Lett. B 69 (1977) 105 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J.F. Amundson, O.J.P. Eboli, E.M. Gregores and F. Halzen, Colorless states in perturbative QCD: charmonium and rapidity gaps, Phys. Lett. B 372 (1996) 127 [hep-ph/9512248] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    M. Bedjidian et al., Hard probes in heavy ion collisions at the LHC: heavy flavor physics, hep-ph/0311048 [INSPIRE].
  55. [55]
    N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  57. [57]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R.E. Nelson, R. Vogt and A.D. Frawley, Narrowing the uncertainty on the total charm cross section and its effect on the J/ψ cross section, Phys. Rev. C 87 (2013) 014908 [arXiv:1210.4610] [INSPIRE].ADSGoogle Scholar
  60. [60]
    Quarkonium Working Group collaboration, N. Brambilla et al., Heavy quarkonium physics, hep-ph/0412158 [INSPIRE].
  61. [61]
    M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    P. Artoisenet, F. Maltoni and T. Stelzer, Automatic generation of quarkonium amplitudes in NRQCD, JHEP 02 (2008) 102 [arXiv:0712.2770] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    H.-S. Shao, HELAC-Onia: an automatic matrix element generator for heavy quarkonium physics, Comput. Phys. Commun. 184 (2013) 2562 [arXiv:1212.5293] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    H.-S. Shao, HELAC-Onia 2.0: an upgraded matrix-element and event generator for heavy quarkonium physics, Comput. Phys. Commun. 198 (2016) 238 [arXiv:1507.03435] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    ATLAS collaboration, Measurement of the differential cross-sections of prompt and non-prompt production of J/ψ and ψ(2S) in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 283 [arXiv:1512.03657] [INSPIRE].
  68. [68]
    F. Maltoni et al., Analysis of charmonium production at fixed-target experiments in the NRQCD approach, Phys. Lett. B 638 (2006) 202 [hep-ph/0601203] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    Y. Kubota and J. Turkewitz, private communication.Google Scholar
  70. [70]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  72. [72]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    CMS collaboration, Measurement of J/ψ and ψ(2S) prompt double-differential cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 114 (2015) 191802 [arXiv:1502.04155] [INSPIRE].
  74. [74]
    D. Price, private communication.Google Scholar
  75. [75]
    C.H. Kom, A. Kulesza and W.J. Stirling, Pair production of J/ψ as a probe of double parton scattering at LHCb, Phys. Rev. Lett. 107 (2011) 082002 [arXiv:1105.4186] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    B. Blok, Yu. Dokshitzer, L. Frankfurt and M. Strikman, Perturbative QCD correlations in multi-parton collisions, Eur. Phys. J. C 74 (2014) 2926 [arXiv:1306.3763] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    T. Kasemets and M. Diehl, Angular correlations in the double Drell-Yan process, JHEP 01 (2013) 121 [arXiv:1210.5434] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Diehl, T. Kasemets and S. Keane, Correlations in double parton distributions: effects of evolution, JHEP 05 (2014) 118 [arXiv:1401.1233] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    Axial Field Spectrometer collaboration, T. Akesson et al., Double parton scattering in pp collisions at \( \sqrt{s}=63 \) GeV, Z. Phys. C 34 (1987) 163 [INSPIRE].
  80. [80]
    UA2 collaboration, J. Alitti et al., A study of multi-jet events at the CERN pp collider and a search for double parton scattering, Phys. Lett. B 268 (1991) 145 [INSPIRE].
  81. [81]
    CDF collaboration, F. Abe et al., Study of four jet events and evidence for double parton interactions in \( p\overline{p} \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 47 (1993) 4857 [INSPIRE].
  82. [82]
    CDF collaboration, F. Abe et al., Double parton scattering in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. D 56 (1997) 3811 [INSPIRE].
  83. [83]
    D0 collaboration, V.M. Abazov et al., Double parton interactions in γ + 3 jet events in \( p\overline{p} \) collisions \( \sqrt{s}=1.96 \) TeV., Phys. Rev. D 81 (2010) 052012 [arXiv:0912.5104] [INSPIRE].
  84. [84]
    CMS collaboration, Study of double parton scattering using W + 2-jet events in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2014) 032 [arXiv:1312.5729] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.IPNO, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-SaclayOrsay CedexFrance
  2. 2.Theoretical Physics DepartmentCERNGeneva 23Switzerland

Personalised recommendations